首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A probabilistic modeling is used to analyze the spatio-temporal behavior of eleven aftershock sequences occurred in South and Southeastern Spain. This study focuses on the analysis of two seismicity parameters: the b-value of the frequency-magnitude distribution, and the p-value, explaining the temporal decay rate of aftershocks. The estimated b values range between 0.77 ± 0.05 and 1.18 ± 0.10 close to the typical b-values of the aftershock frequency-magnitude relationship b  1.0. The estimated p-values range between 0.75 ± 0.03 and 1.43 ± 0.10 showing broad regimes of the temporal decay of aftershocks. The modified Bath’s law used to analyze the energy partitioning, suggests that a large fraction of the accumulated energy is released in the mainshock and relatively small fraction of energy is released during aftershock sequence, for example 80% of the total energy is released during the Mula 1999 mainshock, 88% during Bullas 2002 mainshock and 87% during La Paca 2005 mainshock. The fractal dimension D2 is estimated using the correlation integral, and then used to derive the slip ratio, as the ratio of the slip occurred on primary fault segment to the total slip. For example, we obtained a slip ratio equal to 71% for the Mula 1999 aftershock sequence, 61% for the Bullas 2002 event, 58% for the La Paca 2005 aftershock, 50% for the Lorca 2011 sequence and 63% for the sequence triggered by the Gador 2002 mainshock.Finally, the correlations between the fractal dimension, the b-value and the p-value is analyzed, and the Aki’s relation D = 3b/c is discussed as well.  相似文献   

2.
Slip and length measurements on earthquakes suggest large stress drop variability. We analyze an extended set of slip-length measurements for large earthquakes (M  6) to seek for the possible origin(s) of this apparent variability. We propose that such variability arises from earthquakes breaking a variable number of major fault segments. That number depends on the strength of the inter-segment zones, which itself depends on the structural maturity of the faults. We propose new DmaxL parameterizations based on that idea of multiple segment-ruptures. In such parameterizations, each broken segment roughly scales as a crack, while the total multi-segment rupture does not. Stress drop on individual segments is roughly constant, only varying between 3.5 to 9 MPa. The slight variation that is still observed depends on fault structural maturity; more mature faults have lower stress drops than immature ones. The new DmaxL functions that we propose reduce uncertainties with respect to available relationships. They thus provide a more solid basis to estimate seismic hazard by integrating fault properties revealed by geological studies.  相似文献   

3.
This is an attempt to analyze the current lithospheric stress pattern in the Baikal rift in terms of nonlinear dynamics as an open self-organizing system in order to gain more insights into the general laws of regional seismicity. According to the suggested approach, the stress pattern inferred from seismic moments of 70,000 MLH  2.0 events that occurred in the region between 1968 and 1994 is presented as a phase portrait in the phase spaces of the seismic moments. The obtained phase portrait of the system evolution fits well a scenario with triple equilibrium bifurcation where stress bifurcations account for the frequency of M > 5.5 earthquakes. Extrapolation of the results into the nearest future indicates probability of such a bifurcation (a catastrophe of stress), i.e., there is growing risk that M  7 events may happen in the region within a few years.  相似文献   

4.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

5.
We analyzed the most relevant seismic sequences that occurred from 1977 to 2007 in the Friuli-Venezia Giulia region (northeastern Italy) and western Slovenia. The eight aftershock sequences were triggered by low- to moderate-magnitude earthquakes with mainshock duration magnitude ranging from 3.7 to 5.6. The b-value of the Gutenberg–Richter law varies from 0.8 to 1.1. The modified Omori’s modeling of the sequences evidences values of the p exponent ranging from 0.8 to 1.0. Using the Reasenberg and Jones (Science 243:1173–1176, 1989; Science 265:1251–1252, 1994) approach, we computed the probabilistic estimate of the aftershock rates and the largest aftershock in given time intervals. The difference in magnitude between the mainshock and the largest aftershock is calculated according to the modified Båth law and using an approach that considers the partitioning of the radiated seismic energy between mainshock and aftershocks. The partitioning of the radiated seismic energy appears to play a significant role in the evolution of the sequences. We define the parameter R ES as the ratio between the radiated seismic energy of the mainshock and the summation of the seismic energy radiated by the aftershocks. The difference in magnitude between the mainshock and the largest aftershock, calculated with the parameter R ES, agrees well with the observed difference. In most sequences, the parameter R ES decreases very quickly until the occurrence of the largest aftershock and then becomes constant. By analyzing the values of R ES during the early hours following the mainshock, we found that the R ES values after 24 h are well related to the final ones, calculated on the whole sequence, and to the differences in magnitude between the mainshock and the largest aftershock.  相似文献   

6.
7.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

8.
The seismic history of the city of Ragusa (Italy), the geotechnical characterisation of the subsoil and the site response analysis should be correctly evaluated for the definition of the Seismic Geotechnical Hazard of the city of Ragusa, through geo-settled seismic microzoning maps. Basing on the seismic history of the city of Ragusa, the following earthquake scenarios have been considered: the “Val di Noto” earthquake of January 11, 1693 (with intensity X–XI on MCS scale, magnitude MW=7.41 and epicentral distance of about 53 km); the “Etna” earthquake of February 20, 1818 (with intensity IX on MCS scale, magnitude MW=6.23 and epicentral distance of about 64 km); the Vizzini earthquake of April 13, 1895 (with intensity I=VII–VIII on MCS scale, magnitude MW=5.86 and epicentral distance of about 26 km); the “Modica” earthquake of January 23, 1980 (with intensity I=V–VI on MCS scale, magnitude MW=4.58 and epicentral distance of about 10 km); the “Sicilian” earthquake of December 13, 1990 (with intensity I=VII on MCS scale, magnitude MW=5.64 and epicentral distance of about 50 km). Geotechnical characterisation has been performed by in situ and laboratory tests, with the definition of shear wave velocity profiles in the upper 30 m of soil. Soil response analyses have been evaluated for about 120 borings location by some non-linear 1-D models. Finally the seismic microzonation of the city of Ragusa has been obtained in terms of maps with different peak ground acceleration at the surface; shaking maps for the central area of the city of Ragusa were generated via GIS for the earthquake scenarios.  相似文献   

9.
The earthquake stress-drop values of two sequences were accurately calculated after taking away the effects due to regional earthquake anelastic attenuation and station site response, using waveform data and seismic phase data of sequences of the Jinggu MS6.6, and Ludian MS6.5 earthquakes in Yunnan. These results show that the stress drop with magnitude increases within the scope of this study of magnitude. After eliminating the influence of the magnitude, the average value of stress-drop in the Jinggu sequence is higher than that of the Ludian sequence at the same magnitude range. This may be related to the stress state in different regions. In terms of the changes of time and space of stress-drop, before MS5.8 strong aftershock, the stress-drop is "slowing down-turning up-keeping a high value" after the mainshock, meanwhile, almost all of the abnormally high stress drop value is distributed around the MS5.8 strong aftershock, showing that the stress environment in the region was increasing after the mainshock. And after the MS5.9 strong aftershock, stress-drop rapidly declines to a relatively stable state, meanwhile, the high value of stress-drop is distributed around the strong aftershock, showing that the regional tectonic stress gets more fully release, its stress environment begins to rapidly decrease. For the Ludian sequence without a strong aftershock occurring, the average value of stress drop is lower than that of the Jinggu earthquake sequence at the same magnitude range, while at the same time, the stress-drop of the aftershock sequence almost hasn''t changed much. In the time after the mainshock, combined with the release characteristics of the main energy, the stress in the region is excessively released, the subsequent stress in the region gradually returns to normal. This may be the reason why the activity of Ludian aftershocks significantly was weaker and subsequently there were no strong aftershocks occurred.  相似文献   

10.
11.
We estimated the source parameters of 53 local earthquakes (2.0<ML<5.7) of the Friuli-Venezia Giulia (Northeastern Italy) area, recorded by the short-period local seismic network of the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS), in the period 1995-2003. Data were selected on the basis of high quality locations and focal mechanisms. Standard H/V spectral ratios (HVRS) of the three-component stations of the network were performed in order to assess local amplifications, and only stations showing HVRS not exceeding two were considered for the source parameters estimation. Both velocity and acceleration data were used to compute the SH-wave spectra. Observed spectra were corrected for attenuation effects using an independent regional estimate of the quality factor Q and a station dependent estimate of the spectral decay parameter k. Only earthquakes with ML>3.0 recorded with a sampling rate of 125 cps were used to compute k, thus allowing to visualize a linear trend of the high frequency acceleration spectrum up to 40-50 Hz. SH-wave spectra, corrected for attenuation, showed an ω−2 shape allowing a good fit with the Brune model. Seismic moments and Brune radii ranged between 1.5×1012 and 1.1×1017  N m and between 0.1 and 2.7 km respectively. We obtained Mo=1.1×1017  N m for the seismic moment of the Kobarid (SLO) main shock, in good agreement with the Harvard CMT solution (Mo=3.5×1017  N m). Brune stress drops were confined to the range from 0.07 to 5.31 MPa, with an average value of 0.73 MPa and seem to be approximately constant over five orders of magnitude of seismic moment. Radiated seismic energy computed from two nearby stations scales with seismic moment according to , and apparent stress values are between 0.02 and 4.26 MPa. The observed scatter of Brune stress drop data allowed to hypothesize a scaling relation between seismic moment and corner frequency in order to accommodate both Brune stress drop and apparent stress scalings. No systematic differences are evidenced between stress parameters of earthquakes with different focal mechanisms. As a consequence, a relation of the seismic stress release with the strength of rocks can be hypothesized. A high correlation (r>0.9) of Brune stress drop is found with both apparent stress and RMS stress drop, according to and respectively.  相似文献   

12.
The relation of magma and crustal activity has been studied from spatial distribution of 3He/4He ratios of gas and/or water samples over the Izu Peninsula, where significant crustal deformation associated with seismic swarm activities has been observed since 1970s. The air-corrected values of 3He/4He ratios ranged from 3.5 to 8.2 RA, where RA is the atmospheric 3He/4He ratio = 1.4 × 10? 6, indicating that helium is mostly of magmatic origin. Among the three pressure sources proposed to explain the crustal deformation, two inflation sources beneath the inland of northeast and the mid east coast of the Izu Peninsula locate in the broad distribution of high 3He/4He ratios, which supports relation of magma to the crustal uplift. In contrast, the distribution of 3He/4He ratios around the tensile fault assumed in the area of seismic swarms appears not to indicate existence of significant amount of magma below the tensile fault. Alternatively, the results suggest magma below a point several kilometers south of the tensile fault. The seismic swarms are explained either by fluid pressurization of thermal water heated by this magma or by intrusion of magma to the tensile fault moved obliquely from the deep magma reservoir.  相似文献   

13.
The liquefaction potential of soils is traditionally assessed through geotechnical approaches based on the calculation of the cyclical stress ratio (CSR) induced by the expected earthquake and the ‘resistance’ provided by the soil, which is quantified through standard penetration (SPT), cone penetration (CPT), or similar tests. In more recent years, attempts to assess the liquefaction potential have also been made through measurement of shear wave velocity (VS) in boreholes or from the surface. The latter approach has the advantage of being non-invasive and low cost and of surveying lines rather than single points. However, the resolution of seismic surface techniques is lower than that of borehole techniques and it is still debated whether it is sufficient to assess the liquefaction potential.In this paper we focus our attention on surface seismic techniques (specifically the popular passive and active seismic techniques based on the correlation of surface waves such as ReMiTM, MASW, ESAC, SSAP, etc.) and explore their performance in assessing the liquefaction susceptibility of soils. The experimental dataset is provided by the two main seismic events of ML=5.9 and 5.8 (MW=6.1, MW=6.0) that struck the Emilia-Romagna region (Northern Italy) on May 20 and 29, 2012, after which extensive liquefaction phenomena were documented in an area of 1200 km2.The CPT and drillings available in the area allow us to classify the soils into four classes: A) shallow liquefied sandy soils, B) shallow non-liquefied sandy soils, C) deep non-liquefied sandy soils, and D) clayey–silty soils, and to determine that on average class A soils presented a higher sand content at the depth of 5–8 m compared to class B soils, where sand was dominant in the upper 5 m. Surface wave active–passive surveys were performed at 84 sites, and it was found that they were capable of discriminating among only three soil classes, since class A and B soils showed exactly the same VS distribution, and it is possible to show both experimentally and theoretically that they appear not to have sufficient resolution to address the seismic liquefaction issue.As a last step, we applied the state-of-the art CSR–VS method to assess the liquefaction potential of sandy deposits and we found that it failed in the studied area. This might be due to the insufficient resolution of the surface wave methods in assessing the Vs of thin layers and to the fact that Vs scales with the square root of the shear modulus, which implies an intrinsic lower sensitivity of Vs to the shear resistance of the soil compared to parameters traditionally measured with the penetration tests. However, it also emerged that the pure observation of the surface wave dispersion curves at their simplest level (i.e. in the frequency domain, with no inversion) is still potentially informative and can be used to identify the sites where more detailed surveys to assess the liquefaction potential are recommended.  相似文献   

14.
Equivalent dose (De) values were measured by using medium aliquots of different grain size quartz fractions of five lakeshore sediments from the arid region of north China. There are two different relationships between De values and grain sizes of these five samples. The first relationship is that the De values obtained from various grain sizes are in agreement within 1 delta errors. The second relationship is that De values are similar to each other for fractions between 125 and 300 μm, while the De value of the 63–90 μm fraction is 40~55% smaller than others. For example, the De values obtained for sample #3 are 20.15 ± 1.19 Gy, 19.80 ± 0.83 Gy and 20.93 ± 1.06 Gy for fractions of 90–125, 125–150 and 250–300 μm respectively, but are 10.79 ± 0.84 Gy for the 63–90 μm fraction. The second relationship can't be interpreted by previous studies of both dosimetry and heterogeneous bleaching. It is deduced for sample #2, #3 and #6 that fine particles (<90 μm) intruded after the dominant sedimentation. Comparison of OSL ages from different grain size fractions of sample #2 with a radiocarbon age from the same lithologic layer supports that fractions coarser than 125 μm yield more reliable burial ages, while the fraction finer than 90 μm yields underestimated ages for some lakeshore sediments from this arid region.  相似文献   

15.
Evapotranspiration (LE) is an important factor for monitoring crops, water requirements, and water consumption at local and regional scale. In this paper, we applied the semi-empirical model to estimate the daily latent heat flux (LEd = Rnd + A  B(Ts  Ta)). LEd has been estimated using satellite images (Thematic Mapper sensor) and a local dataset (incoming and outgoing short- and long-wave radiation) measured during three years. We first estimated the daily net Radiation (Rnd) from a linear equation derived from the instantaneous net Radiation (Rnd = CRni + D). Subsequently, coefficients A and B have been estimated for two different cover vegetations (pasture and soybean). For each vegetation cover, an error analysis combining Rnd, A, B, and surface and air temperatures has been calculated. Results showed that Rnd had good performance (nonbias and low RMSE). LEd errors for pasture and soybean were ±28 W m−2 and ±40 W m−2 respectively.  相似文献   

16.
It is understood that sample size could be an issue in earthquake statistical studies, causing the best estimate being too deterministic or less representative derived from limited statistics from observation. Like many Bayesian analyses and estimates, this study shows another novel application of the Bayesian approach to earthquake engineering, using prior data to help compensate the limited observation for the target problem to estimate the magnitude of the recurring Meishan earthquake in central Taiwan. With the Bayesian algorithms developed, the Bayesian analysis suggests that the next major event induced by the Meishan fault in central Taiwan should be in Mw 6.44±0.33, based on one magnitude observation of Mw 6.4 from the last event, along with the prior data including fault length of 14 km, rupture width of 15 km, rupture area of 216 km2, average displacement of 0.7 m, slip rate of 6 mm/yr, and five earthquake empirical models.  相似文献   

17.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

18.
Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤ 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C–CO2, δ34S–H2S, and δ15N–N2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.  相似文献   

19.
The recent earthquake sequences of 2012 (northern Italy) and 2013 (Marche offshore) provided new, fundamental constraints to the active tectonic setting of the outer northern Apennines. In contrast to the Po Plain area, where the 2012 northern Italy earthquakes confirmed active frontal thrusting, the new focal mechanisms obtained in this study for the 2013 Marche offshore earthquakes indicate that only minor thrust fault reactivation occurs in the Adriatic domain, even for a theoretically favourably oriented maximum horizontal compression. Recent seismicity in this domain appears to be mainly controlled by transcurrent crustal faults dissecting the Apennine thrust belt. The along-strike stress field variation from the Po Plain to the Adriatic area has been quantitatively investigated by applying the multiple inverse method (MIM) to the analysis of the entire seismicity recorded from January 1976 to August 2014, from the top 12 km of the crust (fault plane solutions from 127 earthquakes with MW  4), allowing us to obtain a comprehensive picture of the state of stress over the outer zone of the fold and thrust belt. The present-day stress field has been defined for 39 cells of 1.5° × 1.5° surface area and 12 km depth. The obtained stress field maps point out that, although the entire outer northern Apennines belt is characterized by a sub-horizontal maximum compressive axis (σ1), the minimum compression (σ3) is sub-vertical only in the Po Plain area, becoming sub-horizontal in the Adriatic sector, thus confirming that the latter region is dominated by an active tectonic regime of strike-slip type.  相似文献   

20.
Anthropogenic inputs of crude and refined petroleum hydrocarbons into the sea require knowledge of the effects of these contaminants on the receiving assemblages of organisms. A microcosm experiment was carried out to study the influence of diesel on a free living nematode community of a Tunisian lagoon. Sediments were contaminated by diesel that ranged in concentration from 0.5 to 20 mg diesel kg−1 dry weight (dw), and effects were examined after 90 days. Gradual changes in community structure were revealed depending on the quantity of diesel administrated. In the medium (1 mg diesel kg−1 and 5 mg diesel kg−1 (dw)) and high (10 mg diesel kg−1, 15 mg diesel kg−1 and 20 mg kg−1 (dw)) treated microcosms, most univariate measures, including diversity and species richness, decreased significantly with increasing level of diesel contamination whereas nematode assemblage from the low treated microcosm (0.5 mg diesel kg−1 (dw)) remained unaffected. Results from multivariate analyses of the species abundance data demonstrated that responses of nematode species to the diesel treatments were varied: Chaetonema sp. was eliminated at all doses tested and seemed to be intolerant species to diesel contamination; Pomponema sp. and Oncholaimus campylocercoïdes were significantly affected at all diesel contamination levels but they were not eliminated, these species were categorized as “diesel-sensitive”; Hypodontolaimus colesi, Daptonema trabeculosum and Daptonema fallax which significantly increased respectively at 0.5, 1 and 5 mg diesel kg−1 (dw) concentrations and appeared to be “opportunistic” species at these doses whereas Marylynnia stekhoveni which increased at all high doses (10, 15 and 20 mg diesel kg−1 (dw)) seemed to be a “diesel-resistant” species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号