首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small pods of silica-undersaturated Al-rich and Mg-rich granulite facies rocks containing sapphirine, pleonastic spinel, kornerupine, cordierite, orthopyroxene, corundum, sillimanite and gedrite are scattered throughout the NE Strangways Range, Central Australia. These are divided into four distinct rock types, namely orthopyroxene-rich aluminous granofels and metapelitic gneisses containing sapphirine, spinel or kornerupine. Two granulite facies metamorphic events are recognized, of which only the first (M1) is considered in this paper. Peak metamorphic mineral parageneses indicate that the M1 thermal maximum occurred at approximately 900–950 °C and 8–9 kbar. All samples are characterized by profuse and diverse coronitic and symplectic reaction textures. These are interpreted as evidence for the sequential crossing of the following reactions in the system FMAS: cordierite + spinel + corundum = sapphirine + sillimanite, cordierite + spinel = orthopyroxene + sapphirine + sillimanite, sapphirine + spinel + sillimanite = orthopyroxene + corundum, sapphirine + sillimanite = cordierite + orthopyroxene + corundum. Phase stability relationships in FMAS and MASH indicate an anticlockwise P–T path terminated by isobaric cooling. Such a path is exemplified by early low-P mineral parageneses containing spinel, corundum and gedrite and the occurrence of both prograde and retrograde corundum. Reaction textures preserve evidence for an increase in aH2O and aB2O3 with progressive isobaric cooling. This hydrous retrogression resulted from crystallization of intimately associated M1 partial melt segregations. There is no evidence for voluminous magmatic accretion giving rise to the high M1 thermal gradient. The M1 P–T path may be the result of either lithospheric thinning after both crustal thickening and burial of the supracrustal terrane, or concomitant crustal thickening and mantle lithosphere thinning.  相似文献   

2.
Silica-deficient sapphirine-bearing rocks occur as an enclave within granulite facies Proterozoic gneisses and migmatites near Grimstad in the Bamble sector of south-east Norway (Hasleholmen locality). The rocks contain peraluminous sapphirine, orthopyroxene, gedrite, anthophyllite, sillimanite, sapphirine, corundum, cordierite, spinel, quartz and biotite in a variety of assemblages. Feldspar is absent.
Fe2+/(Fe2++ Mg) in the analysed minerals varies in the order: spinel > gedrite ≥ anthophyllite ≥ biotite > sapphirine>orthopyroxene > cordierite.
Characteristic pseudomorph textures indicate coexistence of orthopyroxene and sillimanite during early stages of the reaction history. Assemblages containing orthopyroxene-sillimanite-sapphirine-cordierite-corundum developed during a high-pressure phase of metamorphism and are consistent with equilibration pressures of about 9 kbar at temperatures of 750–800°C. Decompression towards medium-pressure granulite facies generated various sapphirine-bearing assemblages. The diagnostic assemblage of this stage is sapphirine-cordierite. Sapphirine occurs in characteristic symplectite textures. The major mineralogical changes can be described by the discontinuous FMAS reaction: orthopyroxene + sillimanite → sapphirine + cordierite + corundum.
The disequilibrium textures found in the Hasleholmen rocks are characteristic for reactions which have been in progress but then ceased before they run to completion. Textures such as reaction rims, symplectites, partial replacement, corrosion and dissolution of earlier minerals are characteristic of granulite facies rocks. They indicate that, despite relatively high temperatures (700–800° C), equilibrium domains were small and chemical communication and transport was hampered as a result of dry or H2O-poor conditions.  相似文献   

3.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

4.
Sapphirine occurs in the orthopyroxene-cordierite and feldspar-sillimanite granulites in the Sipiwesk Lake area of the Pikwitonei granulite terrain, Manitoba (97°40W, 55°05N). The orthopyroxene-cordierite granulites have extremely high Al2O3 (24.5 wt%) and MgO (24.6 wt%) contents and contain sapphirine (up to 69.2 wt% Al2O3), aluminous orthopyroxene (up to 8.93 wt% Al2O3), cordierite, spinel, phlogopite, and corundum. Sapphirine forms coronas mantling spinel and corundum. Corona sapphirine is zoned and its composition varies through the substitution (Mg, Fe, Mn) Si=2 Al as a function of the phases with which it is in contact. Textural and chemical relationships of sapphirine with coexisting phases indicate that spinel + cordierite reacted to form orthopyroxene + sapphirine under conditions of increasing pressure. Moreover, decreasing core to rim variation of Al2O3 in orthopyroxene porphyroblasts suggests decreasing temperature during sapphirine formation. On the basis of experimentally determined P-T stability of the assemblage enstatite + sapphirine + cordierite, and the Al content of hypothetical Fe2+-free orthopyroxene associated with sapphirine and cordierite, metamorphic temperatures and pressures are estimated to be 860–890° C and 3.0–11.2 kbar.In the feldspar-sillimanite granulites, sapphirine occurs as a relict phase mantled by sillimanite and/or by successive coronas of sillimanite and garnet. These textural relations suggest the reaction sapphirine + garnet + quartz = orthopyroxene + sillimanite with decreasing temperature. Compositions of minerals in the assemblage garnet-orthopyroxene-sillimanite-plagioclase-quartz, indicate metamorphic P-T conditions of 780–880° C and 9±1 kb.The metamorphic conditions estimated in this study suggest that the sapphirine bearing granulites in the Sipiwesk Lake area represent Archean lower crustal rocks. Their formation might be related to the crustal thickening processes in this area as suggested by Hubregtse (1980) and Weber (1983).  相似文献   

5.
An Al‐rich, SiO2‐deficient sapphirine–garnet‐bearing rock occurs as a metapelitic boudin within granulite facies Proterozoic charnockitic gneisses and migmatites on the island of Hisøy, Bamble Sector, SE Norway. The boudin is made up of peraluminous sapphirine, garnet, corundum, spinel, orthopyroxene, sillimanite, cordierite, staurolite and biotite in a variety of assemblages. Thermobarometric calculations based on coexisting sapphirine–spinel, garnet–corundum–spinel–sillimanite, sapphirine–orthopyroxene, and garnet–orthopyroxene indicate peak‐metamorphic conditions near to 930 °C at 10 kbar. Corundum occurs as single 200 to 3000 micron sized skeletal crystal intergrowths in cores of optically continuous pristine garnet porphyroblasts. Quartz occurs as 5–60 micron‐sized euhedral to lobate inclusions in the corundum where it is in direct contact with the corundum with no evidence of a reaction texture. Some crystal inclusions exhibit growth zoning, which indicates that textural equilibrium was achieved. Electron Back‐Scatter Diffraction (EBSD) studies reveal that the quartz inclusions share a common c‐axis with the host corundum crystal. The origin of the quartz inclusions in corundum is enigmatic as recent experimental studies have confirmed the instability of quartz–corundum over geologically realistic P–T ranges. The combined EBSD and textural observations suggest the presence of a former silica‐bearing proto‐corundum, which underwent exsolution during post‐peak‐metamorphic uplift and cooling. Exsolution of quartz in corundum is probably confined to fluid‐absent conditions where phase transitions by coupled dissolution–precipitation mechanisms are prevented.  相似文献   

6.
We report here for the first time, the occurrence of sapphirine+quartz assemblage in textural equilibrium from quartzo-feldspathic and pelitic granulites from southern India. The sapphirine-bearing rocks occur as layered gneisses associated with pink granite within massive charnockite in Rajapalaiyam area in the southern part of Madurai Block. Sapphirine occurs in three associations: (i) fine-grained subhedral mineral associated with quartz enclosed in garnet, (ii) intergrowth with Al-rich orthopyroxene (up to 9.7 wt.% Al2O3), and (iii) in symplectitic intergrowth with orthopyroxene (Al2O3= 5.9–6.7 wt.%) and cordierite surrounding garnet. The sapphirine in association with quartz is slightly magnesian (XMg = 0.79–0.80) and low in Si content (1.55–1.56 pfu) as compared with those associated with orthopyroxene and cordierite (XMg= 0.77–0.79, Si = 1.59–1.63 pfu). The sapphirine+quartz assemblage suggests that the granulites underwent T>1050 °C peak metamorphism. Cores of porphyroblastic orthopyroxene in the sapphirine-bearing rocks shows high-Al2O3 content of up to 9.7 wt.%, suggesting T = 1040–1060°C and P = 8 kbar. FMAS reaction of sapphirine+quartz→garnet+sillimanite+cordierite indicates a cooling from sapphirine+quartz stability field after the peak ultrahigh-temperature metamorphism. Slightly lower temperature estimates from ternary feldspar and sapphirine-spinel geothermometers (T = 950–1000°C) also support a post-peak isobaric cooling. Corona textures of orthopyroxene+cordierite (±sapphirine), orthopyroxene+sapphirine, and cordierite+spinel around garnet suggest subsequent decompression. The sapphirine-quartz association and related textures reported in this study have important bearing on the ultrahigh-temperature metamorphism and exhumation history of the Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   

7.
Highly aluminous orthopyroxene, coexisting with sapphirine, cordierite, sillimanite, quartz and garnet in various combinations, constitute granoblastic mosaic peak metamorphic assemblages in aluminous granulites from three localities in the Eastern Ghats Belt, India. Orthopyroxene contains four types of intergrowths: (a) involving sapphirine with or without cordierite, (b) involving spinel, but without sapphirine, (c) involving cordierite, but without sapphirine and spinel, and (d) involving garnet, without sapphirine, spinel or cordierite. On the basis of textural and compositional data, origin of the intergrowths is ascribed to breakdown of Mg-Tschermak component, locally also involving Fe- and Ti-Tschermak. An attempt is made to compute the “pre-breakdown” compositions of orthopyroxene by image analysis, which shows maximum Al2O3 content of 13.4 wt.% in the pristine orthopyroxene. Geothermometry, phase equilibria consideration and application of existing experimental data on alumina solubility in orthopyroxene coexisting with sapphirine and quartz, collectively indicate extreme thermal conditions of metamorphism (> 1000 °C) for the studied assemblages. This re-affirms the notion that Al2O3 solubility in orthopyroxene is the most powerful indicator of UHT metamorphism (Harley, S.L., 2004. Extending our understanding of ultrahigh temperature crustal metamorphism. J. Mineral. Petrol. Sci. 99, 140–158). The intergrowths are considered to have formed due to cooling from the thermal peak spanning a temperature range of approximately 150 °C. Appearance of diverse types of intergrowths is probably related to subtle differences in bulk composition, particularly Fe:Mg ratios.  相似文献   

8.
High-Mg–Al, silica-undersaturated metapelites from theOygarden Group of islands, East Antarctica, preserve clear evidencefor the stable coexistence of the assemblage orthopyroxene +corundum in natural rocks. The quartz-absent metapelite occursas pods and isolated layers within a high-strain zone relatedto deformation during the c. 0·93 Ga Rayner StructuralEpisode. Assemblages that include orthopyroxene, corundum, sapphirine,sillimanite, cordierite, garnet and kornerupine are developedacross a pre-existing compositional zoning, leading to contrastingmineral Fe–Mg ratios. The assemblage orthopyroxene–corundumis shown to exist in only a very restricted range of bulk compositionsand PT histories. Simplified qualitative FMAS grids havebeen constructed for kornerupine-absent and -present systems,illustrating MAS terminations and divariant equilibria thathelp to describe the mineral assemblage and reaction history.Reaction textures that include coronas of sapphirine and sillimaniteseparating orthopyroxene and corundum, and symplectites of orthopyroxene+ sapphirine ± cordierite/plagioclase, orthopyroxene+ sillimanite ± cordierite/plagioclase and orthopyroxene+ sapphirine + sillimanite embaying garnet, imply a clockwisePTt evolution. Conditions of P > 9–10kbar and T  相似文献   

9.
Sapphirine granulite occurring as lenses in charnockite at Anantagiri,Eastern Ghat, India, displays an array of minerals which developedunder different P-T-X conditions. Reaction textures in conjunctionwith mineral chemical data attest to several Fe-Mg continuousreactions, such as
  1. spinel+rutile+quartz+MgFe–1=sapphirine+ilmenite
  2. cordierite=sapphirine+quartz+MgFe–1
  3. sapphirine+quartz=orthopyroxene+sillimanite+MgFe–1
  4. orthopyroxene+sapphirine+quartz=garnet+MgFe–1
  5. orthopyroxene+sillimanite=garnet+quartz+MgFe–1
  6. orthopyroxene+sillimanite+quartz+MgFe–1=cordierite.
Calculated positions of the reaction curves in P-T space, togetherwith discrete P-T points obtained through geothermobarometryin sapphirine granulite and the closely associated charnockiteand mafic granulite, define an anticlockwise P-T trajectory.This comprises a high-T/P prograde metamorphic path which culminatedin a pressure regime of 8?3 kb above 950?C, a nearly isobariccooling (IBC) path (from 950?C, 8?3 kb, to 675?C, 7?5kb) anda terminal decompressive path (from 7?5 to 4?5 kb). Spinel,quartz, high-Mg cordierite, and sapphirine were stabilized duringthe prograde high-T/P metamorphism, followed by the developmentof orthopyroxene, sillimanite, and garnet during the IBC. Retrogradelow-Mg cordierite appeared as a consequence of decompressionin the sapphirine granulite. Deformational structures, reportedfrom the Eastern Ghat granulites, and the available geochronologicaldata indicate that prograde metamorphism could have occurredat 30001?00 and 2500?100 Ma during a compressive orogeny thatwas associated with high heat influx through mafic magmatism. IBC ensued from Pmax and was thus a direct consequence of progrademetamorphism. However, in the absence of sufficient study onthe spatial variation in P-T paths and the strain historiesin relation to time, the linkage between IBC and isothermaldecompression (ITD) has remained obscure. A prolonged IBC followedby ITD could be the consequence of one extensional mechanismwhich had an insufficient acceleration at the early stage, orITD separately could be caused by an unrelated extensional tectonism.The complex cooled nearly isobarically from 2500 Ma. It sufferedrapid decompression accompanied by anorthosite and alkalinemagmatism at 1400–1000 Ma.  相似文献   

10.
Quartz Al–Mg granulites exposed at In Hihaou, In Ouzzal (NW Hoggar), preserve an unusual high-grade mineral association stable at temperatures up to 1050°C, involving the parageneses orthopyroxene–sillimanite–garnet–quartz, sapphirine–quartz and spinel–quartz. The phase relationships within the FMAS system show that a continuum exists between the earlier prograde reaction textures and those of the later decompressive event. The following mineral reactions involving sillimanite are deduced: (1) Grt+Qtz→Opx+Sil, (2) Opx+Sil→Grt+Spr+Qtz, (3) Grt+Sil+Qtz→Crd, (4) Grt+Sil→Crd+Spr, (5) Grt+Sil+Spr→Crd+Spl, (6) Grt+Sil→Crd+Spl, (7) Grt+Crd+Sil→Spl+Qtz and (8) Grt+Sil→Spl+Qtz. Minerals in quartz Al–Mg granulites display compositional variations consistent with the observed reactions. The Mg/(Mg+Fe2+) range of the main minerals is as follows: cordierite (0.81–0.97), sapphirine (0.77–0.88), orthopyroxene (0.65–0.81), garnet (0.33–0.64) and spinel (0.23–0.56). The reaction textures and the evolution of the mineral assemblages in the quartz Al–Mg granulites indicate a clockwise P–T trajectory characterized by peak conditions of at least 10 kbar and 1050°C, followed by decompression from 10 to 6 kbar at a temperature of at least 900°C.  相似文献   

11.
An assemblage consisting of corundum, sapphirine, spinel, cordierite, garnet, biotite and bronzite is described from the Messina area of the Limpopo Mobile Belt, and consideration given to its petrogenesis. Various geothermometers and geobarometers have been applied in an attempt to determine the temperatures and pressures of metamorphism.
A former coexistence of garnet and corundum is suggested to have developed during the earliest high pressure phase of the metamorphism, where temperatures exceeded 800°C and pressures as high as 10kbar may have been experienced. Subsequently, continuous retrograding reactions from medium pressure granulite facies at about 800°C and 8kbar towards amphibolite facies generated spinel, cordierite, sapphirine and possibly also bronzite. The most notable reaction was probably of the form: garnet + corundum = cordierite + sapphirine + spinel.  相似文献   

12.
Silica deficient Mg-Al granulites from Paramati within the Palghat-Cauvery Shear System contain sapphirine in association with corundum, spinel and sillimanite. Gedrite, which occurs commonly in this locality, coexists with cordierite, corundum and sillimanite. Mineral assemblages and reaction textures indicate peak metamorphism at ultrahigh- temperature conditions. This new locality provides evidence for extreme crustal metamorphism along the Archean-Proterozoic collision boundary in southern India.  相似文献   

13.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

14.
Sapphirine/kornerupine-bearing rocks occur within the anorthosites of the Messina layered intrusion in the Limpopo mobile belt of Zimbabwe. The XMg range of the major minerals is as follows: cordierite (0.98-0.93); enstatite (0.97-0.86); chlorite (0.98-0.92); phlogopite (0.98-0.90); sapphirine (0.98-0.86); kornerupine (0.94-0.88); gedrite (0.96-0.85); spinel (0.92-0.78). There are four rock types, the constituent minerals of which have different values, which decrease in the above mineral order; other minerals are corundum, sillimanite and relict kyanite. We recognise twenty reactions without phlogopite and nine reactions involving phlogopite. The textural relations and the plots of the microprobe data of coexisting minerals in the MgO-Al2O3-SiO2-(H2O) system are consistent with the following sequence of main reactions: (1) enstatite+corundum cordierite+sapphirine; (4) sapphirine+sillimanite cordierite+corundum; (8) kornerupine+corundum cordierite+sapphirine; (13) kornerupine cordierite+sapphirine+enstatite; (15) enstatite+spinel chlorite+sapphirine; (18) cordierite+sapphirine chlorite+corundum; (20) sapphirine chlorite+corundum+spinel. The early reactions are shown by coarse-grained reaction intergrowths, kornerupine and gedrite breakdown is shown by finer-grained symplectites, and the latest reactions by very fine-grained products in micro-fractures. These selected reactions illustrate a remarkably steep trajectory from thePT peak close to 10 kbar and 800° C to the minimum observable at 3.5–4.5 kbar and 700° C as indicated by the pure MASH system. Very rapid uplift took place under nearly isothermal conditions. The protolith of this material was possibly sedimentary, derived from altered volcanic rocks. The bulk composition is close to the composition of kornerupine or to a mixture of alunite, chlorite and pyrophyllite. These texturally and mineralogically complex rocks contain a wealth of relevant data for documenting crustal uplift history.  相似文献   

15.
ULIANOV  A.; KALT  A. 《Journal of Petrology》2006,47(5):901-927
Basanites of the Chyulu Hills (Kenya Rift) contain mafic Mg–Aland Ca–Al granulite xenoliths. Their protoliths are interpretedas troctolitic cumulates; however, the original mineral assemblageswere almost completely transformed by subsolidus reactions.Mg–Al granulites contain the minerals spinel, sapphirine,sillimanite, plagioclase, corundum, clinopyroxene, orthopyroxeneand garnet, whereas Ca–Al granulites are characterizedby hibonite, spinel, sapphirine, mullite, sillimanite, plagioclase,quartz, clinopyroxene, corundum, and garnet. In the Mg–Algranulites, the first generation of orthopyroxene and some spinelmay be of igneous origin. In the Ca–Al granulites, hibonite(and possibly some spinel) are the earliest, possibly igneous,minerals in the crystallization sequence. Most pyroxene, spineland corundum in Mg–Al and Ca–Al granulites formedby subsolidus reactions. The qualitative PT path derivedfrom metamorphic reactions corresponds to subsolidus cooling,probably accompanied, or followed by, compression. Final equilibrationwas achieved at T 600–740°C and P <8 kbar, inthe stability field of sillimanite. The early coexistence ofcorundum and pyroxenes (± spinel), as well as the associationof sillimanite and sapphirine with clinopyroxene and the presenceof hibonite, makes both types of granulite rare. The Ca–Alhibonite-bearing granulites are unique. Both types enlarge thespectrum of known Ca–Al–Mg-rich granulites worldwide. KEY WORDS: granulite xenoliths; corundum; sapphirine; hibonite; Kenya Rift  相似文献   

16.
The sapphirine granulites from G. Madugula, Eastern Ghats preserve a variety of mineral textures and reactions. Corona and reaction textures are used in conjunction with mineral compositions to construct a sequence of metamorphic reactions describing the mineralogical evolution of sapphirine granulites. An early stage is characterized by the development of sapphirine + quartz, spinel + quartz in textural equilibrium, and possible relicts after osumilite during peak metamorphic conditions. Sapphirine/spinel crystals were later detached from quartz in the form of mineral coronas. During a subsequent sapphirine-cordierite stage, several cordierite forming reactions reflect decreasingP-T conditions. Finally during the late stage, a few samples show evidence of retrogressive hydration. Sapphirine is rather iron-rich (12.8 wt%) and the Mg number in the analysed minerals varies in the order: cordierite > phlogopite > sapphirine > orthopyroxene > spinel > garnet.P-T conditions of metamorphism have been constrained through the application of geothermobarometry and thermodynamically calibrated MAS equilibria.P-T vectors from granulite facies rocks in the G. Madugula area indicate that the rocks experienced substantial decompression (up to 3 kbar) and moderate cooling (150–200°C) subsequent to peak conditions of metamorphism (8.4 kbar, > 900°C). The decompressionalP-T history of sapphirine granulites interpreted from textural features and thermobarometric estimates suggest that they may have eventually resulted from exhumation of thickened crust.  相似文献   

17.
Migmatitic granulites from the Indian Head Range (IHR) are dominated by granoblastic, Opx-bearing (quartz) dioritic gneiss with subordinate garnet+orthopyroxene+biotite+albite (±quartz±microcline±cordierite±sillimanite) gneiss and comparatively biotite-rich, sapphirine+cordierite+orthopyroxene+albite (±microcline±sillimanite±corundum) gneiss. The latter contains at least two generations of sapphirine and cordierite, one apparently predating migmatization, the other associated with or following this event. Mineral thermobarometers yield temperatures up to 800 °C at 8 kbar. The IHR granulites have very high δ18O values (+10.8 to +14.5) which most likely indicate a sedimentary precursor. Their REE and HFSE contents resemble the trace element signature of post-Archean Australian shale (PAAS). Lithological analogues from other Grenvillian inliers in western Newfoundland have similar oxygen isotopic and immobile-element signatures. They too are interpreted as metasedimentary rocks. The IHR rocks, however, have unusually sodic compositions (e.g., Na2O/CaO and Na2O/K2O=2.1–22.5 and 0.93–13.8, respectively) and contain albite or sodic oligoclase despite their high metamorphic grade. The geochemical data indicate that these rocks were albitized prior to high-grade metamorphism. No counterpart of this event is recorded in granulites from the other inliers, indicating that the IHR may be highly allochthonous with respect to these other Grenvillian terranes.  相似文献   

18.
Corundum+quartz-bearing assemblages occur in small lenses in granulite facies metapelites in Rayagada, north-central part of the Eastern Ghats Granulite Belt, India. Corundum porphyroblasts and quartz coexist with porphyroblastic almandine-rich garnet, hercynite spinel, ilmenite and magnetite. Corundum and quartz are separated by sillimanite or a composite corona consisting of sillimanite and garnet, whereas corundum shows sharp grain boundaries with spinel, ilmenite and magnetite. Porphyroblastic corundum contains prismatic sillimanite inclusions in which irregularly shaped quartz is enclosed. Two distinct reactions are inferred from the textural features: corundum+quartz=sillimanite and spinel+quartz=garnet+sillimanite. From the petrographical features, we infer that corundum–quartz–garnet–spinel was the peak metamorphic assemblage. Although large uncertainties exist regarding the positions of the respective reactions in P–T  space, from several published experimental results and theoretical calculations a peak metamorphic condition of 12  kbar and 1100  °C is estimated as the lower stability limit of the corundum–quartz assemblage. Decompression from the peak P–T  condition to c .  9  kbar, 950  °C is inferred.  相似文献   

19.
Late-stage hydrous fluids, which evolved during the cooling of the Cadillac Mountain granite, Maine, USA, produced narrow veins that transect the pluton. The vein margins contain microstructures transitional between granite and the vein centre. They preserve the vestige shapes of original Na-rich alkali feldspar crystals that have been pseudomorphed by cordierite+quartz+K-rich alkali feldspar. Closer to the centres of the veins, the minerals change from an outer zone with cordierite, hercynitic–galaxite spinel, minor corundum, K-feldspar and plagioclase to an inner zone with remnant cordierite, hercynitic gahnite, strongly zoned almandine–spessartine garnet, chlorite and quartz. Three allochemical reactions are inferred to have occurred with the influx of hydrous fluids during the replacement process. Reaction (1) is Na-rich alkali feldspar+iron ions in solution=Fe-cordierite+quartz+K-feldspar+sodium ions in solution. Reactions (2) and (3) occurred during desilication. Reaction (2) is Fe-cordierite=hercynite+silica in solution, and reaction (3) is Fe-cordierite+water=corundum+iron hydroxide in solution+silicic acid in solution. Two independent techniques, experimental silica-solubility data and spinel–cordierite thermobarometry, constrain the conditions of vein formation to c.   1.0  kbar and both methods indicate that the progressive mineral reactions occurred during cooling of the hydrous fluids from c. 775° to 400–340  °C. This cooling trend is consistent with the petrographic evidence, which demonstrates that reactions occurred before desilication, during desilication, and then diminished with a final phase of resilication. Although the veins are minor features of the Cadillac Mountain granite, they provide insight into the conditions that prevailed during cooling of the pluton, and similar features may be important for constraining the cooling history of shallow-level plutonic complexes elsewhere.  相似文献   

20.
The cordierite-bearing gneisses occurring as elongate patches in an 8- to 10-km-wide zone along the Achankovil fault-lineament at the northern margin of the southern Kerala crustal segment represent an important lithological unit in the Archaean granulite terrane of south India. The textural relationships in these rocks are consistent with the following main reactions: (1) garnet+quartz=cordierite+hypersthene; (2) garnet+sillimanite+quartz=cordierite; (3) hypersthene+sillimanite+quartz=cordierite; (4) sillimanite+spinel=cordierite+corundum; and (5) biotite+quartz+sillimanite=cordierite+K-feldspar. Many of the mineral associations and reaction textures, including the remarkable preservation of symplectites, are indicative of partial replacement of high-pressure assemblages by cordierite-bearing lower-pressure ones during an event of rapid decompression. Temperature estimates from coexisting mineral phases show 710° (garnet-biotite), 791° (garnet-cordierite) and 788° C (garnet-orthopyroxene). Pressure estimates from mineral assemblages range from 5.4 to 7 kb. Detailed fluid inclusion studies in quartz associated with cordierite show high-density CO2 (0.80–0.95 g/cm3) as the dominant fluid phase, with traces of probable CH4 (?) in the sillimanite-bearing rocks. The isochore for the higher-density fluid inclusions defines a pressure of 5.5 kb. The fracture-bound CO2 and CO2-H2O (±CH4?) inclusions indicate simultaneous entrapment at 400° C and 1.7 kb in the cordierite-hypersthene assemblage and 340° C and 1.2 kb in the cordierite-sillimanite assemblage. The P-T path delineated from combined solid and fluid data corresponds to the piezothermic array of the gneisses and is characterized by T-convex nature, indicative of rapid and virtually isothermal crustal uplift, probably aided by extensional tectonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号