首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2-D shallow velocity structure along the north-south Palashi-Kandi profile in the West Bengal sedimentary basin has been updated by travel-time inversion of seismic refraction, wide-angle reflection and gravity data. A six-layer shallow model up to a depth of about 7 km has been derived. The first layer, which has an average velocity of 2.0 kms?1, represents the alluvium deposit, which rests over the shale formation with average velocity of 3.0 kms?1. The thin (200 m) Sylhet limestone, observed at a nearby Palashi well, remains hidden in the present data set. Hence a 200-m thin layer with a velocity of 3.7 kms?1, corresponding to the Sylhet limestone, has been assumed to be present throughout the profile. The fourth layer with a velocity of 4.5–4.7 kms?1 at a depth of 1.7–2.4 km represents the Rajmahal traps. The ‘skip’ phenomenon and rapid amplitude decay of first arrivals indicate a low-velocity zone (LVZ) in the study area. Using the ‘skip’ phenomena and wide-angle reflection data, identified on seismograms, the LVZ with a velocity of 4.0 kms?1, indicating the Gondwana sediments, has been delineated below the Rajmahal traps. The next layer with a velocity 5.4–5.6 kms?1 overlying the crystalline basement (5.8–6.25 kms?1) may be associated with the Singhbhum group of meta volcanic rock that has been exposed in the western part of the basin. The basement lies at a variable depth of 4.9 to 6.8 km. The overall uncertainties of various velocity and boundary nodes are ± 0.15 kms?1 and ± 0.5 km, respectively. The elevated basement feature in the north might have acted as a structural barrier for the deposition of Sylhet limestone during the Eocene epoch. The seismically derived shallow structure correctly explains the observed Bouguer gravity anomaly along the profile. The addition of reflections in the present analysis provides a stronger control on the depths and velocities of basement and overlying sedimentary formations, compared to the earlier model derived mainly by the first arrival seismic data.  相似文献   

2.
Gravity and magnetic studies have been carried out to map the different depth formations of alluvium, Gondwana, Vindhyan, Mahakoshal, and the crystalline basement in the Narmada–Son lineament (NSL) near the Sahdol–Katni area, India. Higher elevations in the northern part of the study area have lower gravity; the southern part of the study area, however, is moderately elevated and also has a higher gravity anomaly, which justifies the isostatic adjustment. This indicates the presence of high-density material, for example Mahakoshal rocks, in the upper crust which causes the higher anomaly value. The Mahakoshal rocks are widely exposed at Mau, Chanaura, Nadawar, Khamaria, Umria, and near the Tala–Barhi area and also extend from Sidhi to Agoni village further east of the area. The Mahakoshal rocks are thinner between the river Son and Tikwa village which causes a different gravity anomaly pattern changing from the NNE–SSW direction to the N–S direction. However, the trend of magnetic anomaly follows the same pattern toward the NNE–SSW direction, mainly because of the effect of the crystalline basement. Two magnetic highs are prominent in the Tikwa and Amarpur regions, 800 and 400 nTesla, respectively, because of the presence of the crystalline basement. The depth of the crystalline basement obtained by 2½ D gravity–magnetic modelling varies from 2.7 to 2.9 km. From spectral analysis the average depth of the crystalline basement varies from 2.83 to 3.05 km. The different crustal depth sections obtained by 2½ D simultaneous gravity–magnetic modelling correlate well with other constrained data.  相似文献   

3.
对11炮宽角地震反射/折射的Pg波走时数据进行了反演,结果表明:阿尼玛卿缝合带东段基底速度结构整体呈低速带分布,两侧的速度分布相对均匀;缝合带内基底界面剧烈下凹,最深达5.5 km,不存在稳定的基底界面;松潘-甘孜微块体基底界面整体埋深达3.5 km,相对平坦,其中部略微下凹;从缝合带过渡到西秦岭褶皱带,基底界面急剧抬升至1.8 km,之后迅速下降至4.7 km,然后趋于平坦;缝合带的地壳变形存在挤压和走滑两种形式,在缝合带及邻近地区,上部地壳物质曾有过向北方向逃逸的迹象.  相似文献   

4.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

5.
An automatic inversion using ridge regression algorithm is developed in the space domain to analyze the gravity anomalies of sedimentary basins, among which the density contrast decreases with depth following a prescribed exponential function. A stack of vertical prisms having equal widths, whose depths become the unknown parameters to be estimated, describes the geometry of a sedimentary basin above the basement complex. Because no closed form analytical equation can be derivable in the space domain using the exponential density-depth function, a combination of analytical and numerical approaches is used to realize forward gravity modeling. The depth estimates of sediment-basement interface are initiated and subsequently improved iteratively by minimizing the objective function between the observed and modeled gravity anomalies within the specified convergence criteria. Two gravity anomaly profiles, one synthetic and a real, are interpreted using the proposed technique to demonstrate its applicability.  相似文献   

6.
A comprehensive reinterpretation of the available gravity, magnetic, geothermal, geological and borehole information has been made of the Laguna Salada Basin to establish a 3D model of the basement and sedimentary infill. According to statistical spectral analysis, the residual gravity anomaly is due to sources with a mean regional depth of 2.8 km. The topography of the basement was obtained from a three‐dimensional inversion carried out in the wavenumber domain using an iterative scheme. The maximum density contrast of ?300 kg/m3 estimated from previous studies and the mean depth of 2.5 km finally constrained this inversion. The resulting model indicated that the sedimentary infill is up to 4.2 km thick at its deepest point. According to the gravity‐derived basement topography, the basin presents an asymmetry (i.e. it is of the half‐graben type). It is deeper to the east, where it is delimited from the Sierra Cucapah by a step fault. By contrast, the limit with the Sierra de Juarez is a gently sloping fault (i.e. a listric fault). The basement is not even, but it comprises a series of structural highs and lows. N–S to NW–SE and E–W to NE–SW faults delimit these structural units. The magnetic modelling was constrained by (i) the gravity‐derived basement topography; (ii) a Curie isotherm assumed to be between 7 km and 10 km; (iii) assuming induced magnetization only; (iv) the available geological and borehole information. The magnetic anomalies were interpreted successfully using the gravity‐derived basement/sedimentary interface as the top of the magnetic bodies (i.e. the magnetic modelling supports the gravity basement topography). An elongated N–S to NW–SE trending highly magnetized body running from south to north along the basin is observed to the west of the basin. This magnetic anomaly has no gravity signature. Such a feature can be interpreted as an intrusive body emplaced along a fault running through the Laguna Salada Basin. Treatment of the gravity and magnetic information (and of their horizontal gradients) with satellite image processing techniques highlighted lineaments on the basement gravity topography correlating with mapped faults. Based on all this information, we derived detailed geological models along four selected profiles to simulate numerically the heat and fluid flow in the basin. We used a finite‐difference scheme to solve the coupled Darcy and Fourier differential equations. According to our results, we have fluid flow in the sedimentary layers and a redistribution of heat flow from the basin axis toward its rims (Sierra de Juárez and Sierra Cucapah). Our model temperatures agree within an error of 4% with the observed temperature profiles measured at boreholes. Our heat‐flow determinations agree within an error of ±15% with extrapolated observations. The numerical and chemical analyses support the hypothesis of fluid circulation between the clay–lutite layer and the fractured granitic basement. Thermal modelling shows low heat‐flow values along the Laguna Salada Basin. Deep fluid circulation patterns were observed that redistribute such flow at depth. Two patterns were distinguished. One displays the heat flow increasing from the basin axis towards its borders (temperature increase of 20°C). The second pattern shows an increasing heat flow from south to north of the basin. Such behaviour is confirmed by the temperature measurements in the thermometric boreholes.  相似文献   

7.
2-D shallow velocity structure is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the E–W trending Narayanpur–Nandurbar and N–S Kothar–Sakri profiles, located in the Narmada–Tapti region of the Deccan syneclise. Deccan volcanic (Trap) rocks are exposed along the two profiles. Inversion of seismic data reveals two layered velocity structures above the basement along the two profiles. The first layer with a P-wave velocity of 5.15–5.25 km s?1 and thickness varying from 0.7–1.5 km represents the Deccan Trap formation along the Narayanpur–Nandurbar profile. The Trap layer velocity ranges from 4.5 to 5.20 km s?1 and the thickness varies from 0.95 to 1.5 km along the Kothar–Sakri profile. The second layer represents the low velocity Mesozoic sediments with a P-wave velocity of 3.5 km s?1 and thickness ranging from about 0.70 to 1.6 km and 0.55 to 1.1 km along the E–W and N–S profiles, respectively. Presence of a low-velocity zone (LVZ) below the volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data together with the prominent wide-angle reflection phase immediately after the first arrivals from the Deccan Trap formation. The basement with a P-wave velocity of 5.8–6.05 km s?1 lies at a depth ranging from 1.5 to 2.45 km along the profiles. The velocity models of the profiles are similar to each other at the intersection point. The results indicate the existence of a Mesozoic basin in the Narmada–Tapti region of the Deccan syneclise.  相似文献   

8.
The 2.5-D gravity-magnetic models of the upper crustal structures of Sahl El Qaa Area, Southwestern Sinai were constructed along seven profiles, focusing on the uppermost crustal layers to a depth of 4–5 km. In addition separation filtering process; spectral analysis and trend analysis were used to investigate the Bouguer and total intensity aeromagnetic field maps qualitatively and quantitatively. The study showed that the regional structures consist of tilted blocks in the form of a major NW-synclinal feature with an axis dipping northward. This feature is dissected by the NE trending cross faults forming horsts, grabens and step-fault structures. The tilted blocks are controlled by a major normal fault system and are greatly modified in the dip regime from north to south. They show a regional NW dip regime in northern and southern parts, where the depth to the basement reaches about 2–3 km in the down dip. In the central portion, the basin is dipping steeply to the east, with maximum depths attaining about 4–5 km.  相似文献   

9.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

10.
The Central Indian region has a complex geology covering the Godavari Graben, the Bastar Craton (including the Chhattisgarh Basin), the Eastern Ghat Mobile Belt, the Mahanadi Graben and some part of the Deccan Trap, the northern Singhbhum Orogen and the eastern Dharwar Craton. The region is well covered by reconnaissance‐scale aeromagnetic data, analysed for the estimation of basement and shallow anomalous magnetic sources depth using scaling spectral method. The shallow magnetic anomalies are found to vary from 1 to 3 km, whereas magnetic basement depth values are found to vary from 2 to 7 km. The shallowest basement depth of 2 km corresponds to the Kanker granites, a part of the Bastar Craton, whereas the deepest basement depth of 7 km is for the Godavari Basin and the southeastern part of the Eastern Ghat Mobile Belt near the Parvatipuram Bobbili fault. The estimated basement depth values correlate well with the values found from earlier geophysical studies. The earlier geophysical studies are limited to few tectonic units, whereas our estimation provides detailed magnetic basement mapping in the region. The magnetic basement and shallow depth values in the region indicate complex tectonic, heterogeneity, and intrusive bodies at different depths, which can be attributed to different thermo‐tectonic processes since Precambrian.  相似文献   

11.
大丰—包头剖面以"高密度观测点距与炮距"为特点,我们在1334 km测线上获得了21炮高信噪比的地震资料.在对Pg波震相特点分析基础上利用反演方法处理、构建了基底的精细结构图像,揭示了沿剖面不同构造地块基底结构的差异.苏北盆地基底埋深4.5~9.0 km、苏鲁隆起1.5~2.0 km,基底埋深与速度结构的强烈起伏变化可视其为华北与扬子板块碰撞、挤压构造环境下形成复杂的构造格局在地震学上的体现;鲁西隆起区基底埋深浅、速度高,结构稳定;华北盆地Pg波到时滞后、视速度低,基底埋深7.0~10.km,速度结构与基底面存在局部的起伏变化.诸多现象揭示出该区为新生代沉积巨厚、规模较大的基底坳陷区.同时在盆地内不同构造单元基底结构呈局部分块、凹陷与凸起并存的构造格局,显示出新生代沉积活动显著、变化强烈、结构不稳定的构造特点;太行山前断裂、聊兰断裂是具有显著地震学标志的断裂构造带,断裂两侧基底界面呈现出"断崖式塌陷"和速度结构的强烈横向非均匀性.综合研究认为,太行山前断裂是华北地区一条重要的构造带,它的复杂性不仅体现在两侧地形地貌、地层介质的截然不同,其基底埋深及速度结构、地壳及地幔岩石圈结构均存在显著的差异,其重要的标志是太行山以东不仅地壳厚度发生了相当规模的减薄,岩石圈的厚度也明显减薄,亦即形成了华北克拉.通破坏在东西部其基底一地壳一岩石圈的结构在空间上具有明显的差异性及强烈的横向非均匀性.  相似文献   

12.
The dense broadband seismic network provides more high-quality waveform that is helpful to improve constraint focal depth of shallow earthquake. Many shallow earthquakes occurring in sediment were regarded as induced events. In Sichuan basin, gas industry and salt mining are dependent on fluid injection technique that triggers microseismicity. We adopted waveform inversion method with regional records to obtain focal mechanism of an M s4.8 earthquake at Changning. The result suggested that the Changning earthquake occurred at a ESE thrust fault, and its focal depth was about 3 km. The depth phases including teleseismic pP phase and regional sPL phase shows that the focal depth is about 2 km. The strong, short-period surface wave suggests that this event is a very shallow earthquake. The amplitude ratio between Rayleigh wave and direct S wave was also used to estimate the source depth of the mainshock. The focal depth (2–4 km) is far less than the depth of the sedimentary layer thickness (6–8 km) in epicentral region. It is close to the depth of fluid injection of salt mining, which may imply that this event was triggered by the industrial activity.  相似文献   

13.
Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.  相似文献   

14.
The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz’s inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48–50 km) and the Kottas Mountains (48–50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34–38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24–28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20–22 km) and Ross Sea Ice Shelf (16–24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10–20 km).  相似文献   

15.
利用航磁资料和三维磁性层反演理论,对菏泽震区的航磁资料进行了数据处理,计算出震区枧磁化强度分布图、基底磁性界面埋深图和居里等温面埋深图。结果显示东濮凹陷基底磁性界面深达12km,下部居里等温面上隆,凹陷内被弱磁性物质填充。地震发生在凹陷附近视磁化强度、基底磁性界面、居里等温面的变异带上。  相似文献   

16.
We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.  相似文献   

17.
新疆伽师强震群区基底界面结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
用射线分布分析法对伽师强震群区的高分辨折射地震剖面资料进行了更进一步的分析处理, 得到了伽师强震群区更完整的基底界面结构特征. 结果表明,在伽师强震群区地壳上部存在两个明显的结构界面:第一个界面的结构连续、完整,其埋深变化不大, 在2.6~3.3 km之间,为一向天山方向逐渐抬升、 近平直的倾斜界面;第二个界面的埋深变化较大, 在8.5~11.8 km之间,为古老的塔里木盆地结晶基底. 在约37 km桩号附近结晶基底有近2.5 km的深度突变, 推断可能是伽师强震群区超基底断裂所致. 以该断裂为界,结晶基底分为西南、东北两段. 每段内界面的埋深变化不大, 西南段的埋深约11.5 km, 东北段的埋深约为8.5~9.0 km,该段在从西南向东北整体抬升的背景上略有上隆,反映出在塔里木地块西北缘特殊的构造环境下上部地壳的变形特征.   相似文献   

18.
The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface struc-tural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the bur-ied depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The north-east segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.  相似文献   

19.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

20.
The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece (M w  5.3) generated unusually strong long-period waves (periods 4–8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40–250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号