首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fault surface roughness is a principal factor influencing earthquake mechanics, and particularly rupture initiation, propagation, and arrest. However, little data currently exist on fault surfaces at seismogenic depths. Here, we investigate the roughness of slip surfaces from the seismogenic strike-slip Gole Larghe Fault Zone, exhumed from ca. 10 km depth. The fault zone exploited pre-existing joints and is hosted in granitoid rocks of the Adamello batholith (Italian Alps). Individual seismogenic slip surfaces generally show a first phase of cataclasite production, and a second phase with beautifully preserved pseudotachylytes of variable thickness. We determined the geometry of fault traces over almost five orders of magnitude using terrestrial laser-scanning (LIDAR, ca. 500 to <1 m scale), and 3D mosaics of high-resolution rectified digital photographs (10 m to ca. 1 mm scale). LIDAR scans and photomosaics were georeferenced in 3D using a Differential Global Positioning System, allowing detailed multiscale reconstruction of fault traces in Gocad®. The combination of LIDAR and high-resolution photos has the advantage, compared with classical LIDAR-only surveys, that the spatial resolution of rectified photographs can be very high (up to 0.2 mm/pixel in this study), allowing for detailed outcrop characterization. Fourier power spectrum analysis of the fault traces revealed a self-affine behaviour over 3–5 orders of magnitude, with Hurst exponents ranging between 0.6 and 0.8. Parameters from Fourier analysis have been used to reconstruct synthetic 3D fault surfaces with an equivalent roughness by means of 2D Fourier synthesis. Roughness of pre-existing joints is in a typical range for this kind of structure. Roughness of faults at small scale (1 m to 1 mm) shows a clear genetic relationship with the roughness of precursor joints, and some anisotropy in the self-affine Hurst exponent. Roughness of faults at scales larger than net slip (>1–10 m) is not anisotropic and less evolved than at smaller scales. These observations are consistent with an evolution of roughness, due to fault surface processes, that takes place only at scales smaller or comparable to the observed net slip. Differences in roughness evolution between shallow and deeper faults, the latter showing evidences of seismic activity, are interpreted as the result of different weakening versus induration processes, which also result in localization versus delocalization of deformation in the fault zone. From a methodological point of view, the technique used here is advantageous over direct measurements of exposed fault surfaces in that it preserves, in cross-section, all of the structures which contribute to fault roughness, and removes any subjectivity introduced by the need to distinguish roughness of original slip surfaces from roughness induced by secondary weathering processes. Moreover, offsets can be measured by means of suitable markers and fault rocks are preserved, hence their thickness, composition and structural features can be characterised, providing an integrated dataset which sheds new light on mechanisms of roughness evolution with slip and concomitant fault rock production.  相似文献   

2.
The scaling properties of fracture and faulting of ice on Earth are reviewed.Numerous evidences for the scaling of fracture and faulting of ice are given,including self-affine fracture surfaces, fractal fracture networks at small(laboratory) and large (geophysical) scales, power law distributions of fracturelengths or of fragment sizes within fault gouges. These scaling laws are discussedin terms of the underlying mechanics. Scaling of the observables associated withfracture and faulting argues for the scale invariance of the fracture and faultingprocesses and indicates that small scales cannot be arbitrarily disconnected fromlarge scales. Consequently, quantitative links between scales cannot be performedthrough classical homogenization procedures. Scaling can also induce scale effectson different mechanical parameters such as fracture energy, strength or stiffness.Although scaling is ubiquitous for the fracture of ice on Earth, important exceptionsexist such as the nucleation of microcracks or the crevassing of glaciers. Theseexceptions are stressed and discussed.  相似文献   

3.
— The propagation of an interfacial crack through a weak plane of a transparent Plexiglas block is studied experimentally. The toughness is controlled artificially by a sand blasting procedure, and fluctuates locally in space like uncorrelated random noise. The block is fractured in mode I at low speed (10?7?10?4 m/s). The crack front is observed optically with a microscope and a high resolution digital camera. During the propagation, the front is pinned by micro-regions of high toughness and becomes rough. Roughness of the crack front is analyzed in terms of self-affinity. The in-plane roughness exponent is shown to be 0.63±0.05. Experimental results are compared to a numerical model. The model reproduces the self-affine behavior of the crack front, i.e., long-range correlations of the roughness. Analogies between mode I and mode III are presented in order to discuss implications of the experimental results for creeping faults. Accordingly, correlations of the slip pattern are shown to exist over scales substantially larger than the asperity sizes.  相似文献   

4.
-- In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by Dieterich and Kilgore (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance Dc on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.  相似文献   

5.
Flow resistance in mountain streams is important for assessing flooding hazard and quantifying sediment transport and bedrock incision in upland landscapes. In such settings, flow resistance is sensitive to grain-scale roughness, which has traditionally been characterized by particle size distributions derived from laborious point counts of streambed sediment. Developing a general framework for rapid quantification of resistance in mountain streams is still a challenge. Here we present a semi-automated workflow that combines millimeter- to centimeter-scale structure-from-motion (SfM) photogrammetry surveys of bed topography and computational fluid dynamics (CFD) simulations to better evaluate surface roughness and rapidly quantify flow resistance in mountain streams. The workflow was applied to three field sites of gravel, cobble, and boulder-bedded channels with a wide range of grain size, sorting, and shape. Large-eddy simulations with body-fitted meshes generated from SfM photogrammetry-derived surfaces were performed to quantify flow resistance. The analysis of bed microtopography using a second-order structure function identified three scaling regimes that corresponded to important roughness length scales and surface complexity contributing to flow resistance. The standard deviation σz of detrended streambed elevation normalized by water depth, as a proxy for the vertical roughness length scale, emerges as the primary control on flow resistance and is furthermore tied to the characteristic length scale of rough surface-generated vortices. Horizontal length scales and surface complexity are secondary controls on flow resistance. A new resistance predictor linking water depth and vertical roughness scale, i.e.  H/σz, is proposed based on the comparison between σz and the characteristic length scale of vortex shedding. In addition, representing streambeds using digital elevation models (DEM) is appropriate for well-sorted streambeds, but not for poorly sorted ones under shallow and medium flow depth conditions due to the missing local overhanging features captured by fully 3D meshes which modulate local pressure gradient and thus bulk flow separation and pressure distribution. An appraisal of the mesh resolution effect on flow resistance shows that the SfM photogrammetry data resolution and the optimal CFD mesh size should be about 1/7 to 1/14 of the standard deviation of bed elevation. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
7.

The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.

  相似文献   

8.
Time series in the Earth Sciences are often characterized as self-affine long-range persistent, where the power spectral density, S, exhibits a power-law dependence on frequency, f, S(f) ~ f ?β , with β the persistence strength. For modelling purposes, it is important to determine the strength of self-affine long-range persistence β as precisely as possible and to quantify the uncertainty of this estimate. After an extensive review and discussion of asymptotic and the more specific case of self-affine long-range persistence, we compare four common analysis techniques for quantifying self-affine long-range persistence: (a) rescaled range (R/S) analysis, (b) semivariogram analysis, (c) detrended fluctuation analysis, and (d) power spectral analysis. To evaluate these methods, we construct ensembles of synthetic self-affine noises and motions with different (1) time series lengths N = 64, 128, 256, …, 131,072, (2) modelled persistence strengths β model = ?1.0, ?0.8, ?0.6, …, 4.0, and (3) one-point probability distributions (Gaussian, log-normal: coefficient of variation c v = 0.0 to 2.0, Levy: tail parameter a = 1.0 to 2.0) and evaluate the four techniques by statistically comparing their performance. Over 17,000 sets of parameters are produced, each characterizing a given process; for each process type, 100 realizations are created. The four techniques give the following results in terms of systematic error (bias = average performance test results for β over 100 realizations minus modelled β) and random error (standard deviation of measured β over 100 realizations): (1) Hurst rescaled range (R/S) analysis is not recommended to use due to large systematic errors. (2) Semivariogram analysis shows no systematic errors but large random errors for self-affine noises with 1.2 ≤ β ≤ 2.8. (3) Detrended fluctuation analysis is well suited for time series with thin-tailed probability distributions and for persistence strengths of β ≥ 0.0. (4) Spectral techniques perform the best of all four techniques: for self-affine noises with positive persistence (β ≥ 0.0) and symmetric one-point distributions, they have no systematic errors and, compared to the other three techniques, small random errors; for anti-persistent self-affine noises (β < 0.0) and asymmetric one-point probability distributions, spectral techniques have small systematic and random errors. For quantifying the strength of long-range persistence of a time series, benchmark-based improvements to the estimator predicated on the performance for self-affine noises with the same time series length and one-point probability distribution are proposed. This scheme adjusts for the systematic errors of the considered technique and results in realistic 95 % confidence intervals for the estimated strength of persistence. We finish this paper by quantifying long-range persistence (and corresponding uncertainties) of three geophysical time series—palaeotemperature, river discharge, and Auroral electrojet index—with the three representing three different types of probability distribution—Gaussian, log-normal, and Levy, respectively.  相似文献   

9.
Stress sensitivity of stylolite morphology   总被引:1,自引:0,他引:1  
Stylolites are rough surfaces that form by localized stress-induced dissolution. Using a set of limestone rock samples collected at different depths from a vertical section in Cirque de Navacelles (France), we study the influence of the lithostatic stress on the stylolites morphology on the basis of a recent morphogenesis model. We measured the roughness of a series of bedding-parallel stylolites and show that their morphology exhibits a scaling invariance with two self-affine scaling regimes separated by a crossover-length (L) at the millimeter scale consistent with previous studies. The importance of the present contribution is to estimate the stylolite formation stress σ from the sample position in the stratigraphic series and compare it to the crossover-length L using the expected relationship: L  σ ?2. We obtained a successful prediction of the crossover behavior and reasonable absolute stress magnitude estimates using relevant parameters: depth of stylolite formation between 300 to 600 m with corresponding normal stress in the range of 10–18 MPa. Accordingly, the stylolite morphology contains a signature of the stress field during formation and we thus suggest that stylolites could be used as paleo-stress gauges of deformation processes in the upper crust.  相似文献   

10.
High resolution topography measurements of the Vuache–Sillingy fault (Alps, France) reveal a characteristic roughness of the fault zone. We investigate the effect of roughness on the rheology of a planar shear configuration by using a model system consisting of a visco-elastic layer embedded into a rigid solid. The model is discussed in the context of several geological cases: a damage fault zone, a fault smeared with a clay layer, and a shear zone with strain weakening. Using both analytical approaches and finite element simulations, we calculate to linear order the relation between wall roughness and the viscous dissipation in the fault zone as well as the average shear rate.  相似文献   

11.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

12.
Aerodynamic roughness length (z0), the height above the ground surface at which the extrapolated horizontal wind velocity profile drops to zero, is one of the most poorly parameterised elements of the glacier surface energy balance equation. Microtopographic methods for estimating z0 have become prominent in the literature in recent years, but are rarely validated against independent measures and are yet to be comprehensively analysed for scale or data resolution dependency. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post‐monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed recorded by a tower comprising five cup anemometers and deployed over both sites enable us to derive measurements of aerodynamic roughness that reflect their observed surface characteristics (0.0184 m and 0.0243 m, respectively). At the second site, z0 also varied through time following snowfall (0.0055 m) and during its subsequent melt (0.0129 m), showing the importance of fine resolution topography for near‐surface airflow. To compare the wind profile data with microtopographic methods, we conducted structure from motion multi‐view stereo (SfM‐MVS) surveys across each patch and calculated z0 using three previously published approaches. The fully three‐dimensional cloud‐based approach is shown to be most stable across different scales and these z0 values are most correct in relative order when compared with the wind tower data. Popular profile‐based methods perform less well providing highly variable values across different scales and when using data of differing resolution. These findings hold relevance for all studies using microtopographic methods to estimate aerodynamic roughness lengths, including those in non‐glacial settings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Some signed measures in turbulence are found to be sign-singular, that is their sign reverses continuously on arbitrary finer scales with a reduction of the cancellation between positive and negative contributions. The strength of the singularity is characterized by a scaling exponent , the cancellation exponent. In the present study by using some turbulent samples of the velocity field obtained from spacecraft measurements in the interplanetary medium, we show that sign-singularity is present everywhere in low-frequency turbulent samples. The cancellation exponent can be related to the characteristic scaling laws of turbulence. Differences in the values of , calculated in both high- and low-speed streams, allow us to outline some physical differences in the samples with different velocities.  相似文献   

15.
Stress interactions and sliding characteristics of faults with random fractal waviness in a purely elastic medium differ both qualitatively and quantitatively from those of faults with planar surfaces. With nonplanar fault models, solutions for slip diverge as resolution of the fractal features increases, and the scaling of fault slip with fault rupture dimension becomes nonlinear. We show that the nonlinear scaling of slip and divergence of solutions arise because stresses from geometric interactions at irregularities along nonplanar faults grow with increasing slip and produce backstresses that progressively impede slip. However, in real materials with finite strength, yielding will halt the growth of the interaction stresses, which will profoundly affect slip of nonplanar faults. We infer that in the brittle seismogenic portion of the Earth’s crust, off-fault yielding occurs on pervasive secondary faults. Predicted rates of stress relaxation with distance from major faults with random fractal roughness follow a power-law relationship that is consistent with reported clustering of background seismicity up to 15 kilometers from faults.  相似文献   

16.
Characterization of Fault Zones   总被引:8,自引:0,他引:8  
— There are currently three major competing views on the essential geometrical, mechanical, and mathematical nature of faults. The standard view is that faults are (possibly segmented and heterogeneous) Euclidean zones in a continuum solid. The continuum-Euclidean view is supported by seismic, gravity, and electromagnetic imaging studies; by successful modeling of observed seismic radiation, geodetic data, and changes in seismicity patterns; by detailed field studies of earthquake rupture zones and exhumed faults; and by recent high resolution hypocenter distributions along several faults. The second view focuses on granular aspects of fault structures and deformation fields. The granular view is supported by observations of rock particles in fault zone gouge; by studies of block rotations and the mosaic structure of the lithosphere (which includes the overall geometry of plate tectonics); by concentration of deformation signals along block boundaries; by correlation of seismicity patterns on scales several times larger than those compatible with a continuum framework; and by strongly heterogeneous wave propagation effects on the earth's surface. The third view is that faults are fractal objects with rough surfaces and branching geometry. The fractal view is supported by some statistical analysis of regional hypocenter locations; by long-range correlation of various measurements in geophysical boreholes; by the fact that observed power-law statistics of earthquakes are compatible with an underlying scale-invariant geometrical structure; by geometrical analysis of fault traces at the earth's surface; and by measurements of joint and fault surfaces topography.¶There are several overlaps between expected phenomenology in continuum-Euclidean, granular, and fractal frameworks of crustal deformation. As examples, highly heterogeneous seismic wavefields can be generated by granular media, by fractal structures, and by ground motion amplification around and scattering from an ensemble of Euclidean fault zones. A hierarchical granular structure may have fractal geometry. Power-law statistics of earthquakes can be generated by slip on one or more heterogeneous planar faults, by a fractal collection of faults, and by deformation of granular material. Each of the three frameworks can produce complex spatio-temporal patterns of earthquakes and faults. At present the existing data cannot distinguish unequivocally between the three different views on the nature of fault zones or determine their scale of relevance. However, in each observational category, the highest resolution results associated with mature large-displacement faults are compatible with the standard continuum-Euclidean framework. This can be explained by a positive feedback mechanism associated with strain weakening rheology and localization, which attracts the long-term evolution of faults toward progressive regularization and Euclidean geometry. A negative feedback mechanism associated with strain hardening during initial deformation phases and around persisting geometrical irregularities and conjugate sets of faults generates new fractures and granularity at different scales. We conclude that long-term deformation in the crust, including many aspects of the observed spatio-temporal complexity of earthquakes and faults, may be explained to first order within the continuum-Euclidean framework.  相似文献   

17.
Faulting that results in surface ruptures through bedrock can be particularly difficult to date. For example, stratigraphic control on the age of faulting, based on the age of the bedrock, often leaves unacceptably large uncertainty on the age of the faulting. From a paleoseismological perspective, there is a clear need to determine if a bedrock fault scarp is actually a young feature. For young fault ruptures that create fresh mineral surfaces, analysis of microtopography developed by weathering of the mineral surface may provide a quantifiable method for determining the fault age. The direct quantitative measurement of mineral surface microtopography using Atomic Force Microscopy affords a novel method to study the rupture ages of active faults. The method for using microtopographic evolution of mineral surfaces depends on three conditions. The first condition is that freshly exposed mineral cleavage surfaces, which can be described geometrically as planes, are formed during a rupture event. The formation of these fresh surfaces is analogous to the initiation of a weathering ‘clock’ that defines time t=0. Following cleavage formation dissolution of the planar mineral surface occurs. The rate of dissolution for a mineral species under given climatic conditions, governs the rate of mineral surface alteration. Thus as dissolution proceeds, the roughness of the mineral surface increases. We suggest that the progression of microtopographic roughness over time, which can be estimated by computing quantitative statistics derived from digital mineral surface topography, will systematically vary until a steady state surface topography is reached. The fractal dimension, Df, is one such measure of surface roughness where, Df at time t=0 is 2. The dissolution of the mineral surface increases the fractal dimension as the removal of material proceeds. We posit that somewhere between Df=2 and Df=3, the microtopography reaches a steady state. Therefore, in the pre-steady state stage of surface roughness, the quantitative measure of roughness of the mineral may serve as a measure of time elapsed since faulting. The period of time this initial stage of surface roughening represents is dependent on the mineral and as a consequence, its dissolution rate, in a specific set of environmental conditions. The time elapsed since fault rupture and grain cleavage can also be estimated from the measurement of the volume of material removed through dissolution. If part of the original cleavage surface remains and can be identified then AFM measurements of the surface microtopography can be used to calculate the dissolved volume per unit area.  相似文献   

18.
A key problem in computational fluid dynamics (CFD) modelling of gravel‐bed rivers is the representation of multi‐scale roughness, which spans the range from grain size, through bedforms, to channel topography. These different elements of roughness do not clearly map onto a model mesh and use of simple grain‐scale roughness parameters may create numerical problems. This paper presents CFD simulations for three cases: a plane bed of fine gravel, a plane bed of fine gravel including large, widely‐spaced pebble clusters, and a plane gravel bed with smaller, more frequent, protruding elements. The plane bed of fine gravel is modelled using the conventional wall function approach. The plane bed of fine gravel including large, widely‐spaced pebble clusters is modelled using the wall function coupled with an explicit high‐resolution topographic representation of the pebble clusters. In these cases, the three‐dimensional Reynolds‐averaged continuity and Navier–Stokes equations are solved using the standard k ? ε turbulence model, and model performance is assessed by comparing predicted results with experimental data. For gravel‐bed rivers in the field, it is generally impractical to map the bed topography in sufficient detail to enable the use of an explicit high‐resolution topography. Accordingly, an alternative model based on double‐averaging is developed. Here, the flow calculations are performed by solving the three‐dimensional double‐averaged continuity and Navier‐Stokes equations with the spatially‐averaged 〈k ? ε〉 turbulence model. For the plane bed of fine gravel including large, widely‐spaced pebble clusters, the model performance is assessed by comparing the spatially‐averaged velocity with the experimental data. The case of a plane gravel bed with smaller, more frequent, protruding elements is represented by a series of idealized hypothetical cases. Here, the spatially‐averaged velocity and eddy viscosity are used to investigate the applicability of the model, compared with using the explicit high‐resolution topography. The results show the ability of the model to capture the spatially‐averaged flow field and, thus, illustrate its potential for representing flow processes in natural gravel‐bed rivers. Finally, practical data requirements for implementing such a model for a field example are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reports internal structures of a wide fault zone at Shenxigou, Dujiangyan, Sichuan province, China, and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake. Vertical offset and horizontal displacement at the trench site were 2.8 m (NW side up) and 4.8 m (right-lateral), respectively. The fault zone formed in Triassic sandstone, siltstone, and shale about 500 m away from the Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system. A trench survey across the coseismic fault, and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about 0.5 and 250–300 m in widths, respectively, and that the fault strikes N62°E and dips 68° to NW. Quaternary conglomerates were recovered beneath the fault in the drilling, so that the fault moved at least 55 m along the coseismic slip zone, experiencing about 18 events of similar sizes. The fault core is composed of grayish gouge (GG) and blackish gouge (BG) with very complex slip-zone structures. BG contains low-crystalline graphite of about 30 %. High-velocity friction experiments were conducted at normal stresses of 0.6–2.1 MPa and slip rates of 0.1–2.1 m/s. Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient μ p to steady-state friction coefficient μ ss over a slip-weakening distance D c. Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces, respectively. Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.  相似文献   

20.
We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号