首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fifty-eight chondrules were separated from the Dhajala H3.8 chondrite and their thermoluminescence properties were measured. Chips from 30 of the chondrules were examined petrographically and with electron-microprobe techniques; the bulk compositions of 30 chondrules were determined by the fused bead technique. Porphyritic chondrules, especially 5 which have particularly high contents of mesostasis, tend to have higher TL (mass-normalized) than non-porphyritic chondrules. Significant correlations between log(TL) and the bulk CaO, Al2O3 and MnO content of the chondrules, and between log(TL) and the CaO, Al2O3, SiO2 and normative anorthite content of the chondrule glass, indicate an association between TL and the abundance and composition of mesostasis. Unequilibrated chondrules ( i.e. those whose olivine is compositionally heterogeneous and high in Ca) have low TL, whereas equilibrated chondrules have a wide range of TL, depending on their chemical and petrographic properties.We suggest that the TL level in a given chondrule is governed by its bulk composition (which largely determined the abundance and composition of constituent glass) and by metamorphism (which devitrfied the glass in those chondrules with high Ca glass to produce the TL phosphor). We also suggest that one reason why certain chondrules in type 3 ordinary chondrites are unequilibrated, while others are equilibrated, is that the mesostasis of the unequilibrated chondrules resisted the devitrification. This devitrification is necessary for the diffusive communication between chondrule grains and matrix that enables equilibration.  相似文献   

2.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

3.
Whole-rock samples of 25 carbonaceous chondrites were analysed for contents of C, H and N and δ13C, δD and δ15N. Inhomogeneous distribution of these isotopes within individual meteorites is pronounced in several cases. Few systematic intermeteorite trends were observed; N data are suggestive of isotopic inhomogeneity in the early solar system. Several chondrites revealed unusual compositions which would repay further, more detailed study. The data are also useful for classification of carbonaceous chondrites; N abundance and isotopic compositions can differentiate existing taxonomic groups with close to 100% reliability; Al Rais and Renazzo clearly constitute a discrete “grouplet”; and there are hints that both CI and CM groups may each be divisible into two subgroups.  相似文献   

4.
Several percent of the olivine in the C2, C3 and unequilibrated ordinary chondrites (UOC) can be distinguished by blue cathodoluminescence (CL) and an unusual composition for forsterite. This olivine has the following textural features:
  • 1.(1) forms cores in single olivine grains;
  • 2.(2) shows subhedral to euhedral boundaries against rim olivine;
  • 3.(3) rarely contains inclusions;
  • 4.(4) has embayments containing olivine like that of the rim;
  • 5.(5) occurs within chondrules especially in UOC meteorites.
The blue olivine is always Fe-poor (0.25 < FeO < 1.0%) and shows the following average and maximum values (%): Al2O3 (0.25, 0.5), TiO2 (0.05, 0.09), CaO (0.5, 0.8), Cr2O3 (0.15, 0.5), and MnO (0.02, 0.15); vanadium is present. Within a single olivine and within all blue olivines Al, Ca and Ti are strongly positively correlated as are Mn, Fe, and Cr in olivine surrounding the blue. The blue cores are not zoned but each element shows a marked change at the boundary of the blue with Al showing the most rapid change. These are interpreted as diffusion profiles between rim and core olivine.Textures suggest initial free growth probably from a gas and later addition of olivine by liquid crystallization to form single crystals or chondrules. The unusual olivine composition indicates high temperature growth from a refractory-rich reservoir with Al entering olivine in tetrahedral coordination. Vapor growth is suggested as the process allowing the high minor element levels. The occurrence of blue olivine in all primitive meteorites indicates that it is relic material which was widespread prior to chondrule and hence meteorite formation. Similarities in composition exist between this relic olivine and olivine of cosmic dust and Deep Sea Particles pointing to this olivine being a common component in all primitive extraterrestrial material.  相似文献   

5.
We report in situ ion microprobe analyses of oxygen isotopic compositions of olivine, low-Ca pyroxene, high-Ca pyroxene, anorthitic plagioclase, glassy mesostasis, and spinel in five aluminum-rich chondrules and nine ferromagnesian chondrules from the CR carbonaceous chondrites EET92042, GRA95229, and MAC87320. Ferromagnesian chondrules are isotopically homogeneous within ±2‰ in Δ17O; the interchondrule variations in Δ17O range from 0 to −5‰. Small oxygen isotopic heterogeneities found in two ferromagnesian chondrules are due to the presence of relict olivine grains. In contrast, two out of five aluminum-rich chondrules are isotopically heterogeneous with Δ17O values ranging from −6 to −15‰ and from −2 to −11‰, respectively. This isotopic heterogeneity is due to the presence of 16O-enriched spinel and anorthite (Δ17O = −10 to −15‰), which are relict phases of Ca,Al-rich inclusions (CAIs) incorporated into chondrule precursors and incompletely melted during chondrule formation. These observations and the high abundance of relict CAIs in the aluminum-rich chondrules suggest a close genetic relationship between these objects: aluminum-rich chondrules formed by melting of spinel-anorthite-pyroxene CAIs mixed with ferromagnesian precursors compositionally similar to magnesium-rich (Type I) chondrules. The aluminum-rich chondrules without relict CAIs have oxygen isotopic compositions (Δ17O = −2 to −8‰) similar to those of ferromagnesian chondrules. In contrast to the aluminum-rich chondrules from ordinary chondrites, those from CRs plot on a three-oxygen isotope diagram along the carbonaceous chondrite anhydrous mineral line and form a continuum with amoeboid olivine aggregates and CAIs from CRs. We conclude that oxygen isotope compositions of chondrules resulted from two processes: homogenization of isotopically heterogeneous materials during chondrule melting and oxygen isotopic exchange between chondrule melt and 16O-poor nebular gas.  相似文献   

6.
戴德求  包海梅  刘爽  尹锋 《岩石学报》2020,36(6):1850-1856
富Al球粒是原始球粒陨石中一种矿物岩石学特征介于富钙铝包体(CAIs)和镁铁质硅酸盐球粒之间的特殊集合体,所以常常认为富Al球粒在认识CAIs和镁铁质硅酸盐球粒形成演化过程中的相互联系具有特殊意义。然而,对富Al球粒的初始物质组成以及形成演化过程一直存在较多争议,而氧同位素组成研究能够对球粒演化和早期星云环境等提供重要的信息。在本文中我们报导了来自Kainsaz(1937年降落于俄罗斯,CO3型)碳质球粒陨石中的2个富Al球粒(编号K1-CH1和K2-CH2)的矿物岩石学和氧同位素组成特征。K1-CH1的矿物组成主要为橄榄石、低钙辉石和富钙长石,K2-CH2为橄榄石和富钙长石。2个球粒中的矿物均具有贫~(16)O同位素组成特征。K1-CH1中矿物的△~(17)O组成基本上位于2个区间:-11.1‰~-8.7‰和-3.9‰~0.4‰;而K2-CH2的△~(17)O介于-6.6‰~-0.6‰之间,且具有从中部至边部升高的趋势。矿物岩石学和氧同位素特征表明,这2个富Al球粒的初始物质组成为富CAIs和镁铁质硅酸盐。在球粒熔融结晶过程中,与贫~(16)O同位素组成(△~(17)O:-8.7‰~-7.8‰)的星云发生了氧同位素交换。球粒形成后,发生迁移进入陨石母体,在相对更贫~(16)O同位素组成(△~(17)O:-0.6‰~0.4‰)的母体中(流体参与)发生变质作用,并再次发生了氧同位素交换。  相似文献   

7.
We report on the mineralogy, petrography, and in situ oxygen isotopic composition of twenty-five ultrarefractory calcium-aluminum-rich inclusions (UR CAIs) in CM2, CR2, CH3.0, CV3.1–3.6, CO3.0–3.6, MAC 88107 (CO3.1-like), and Acfer 094 (C3.0 ungrouped) carbonaceous chondrites. The UR CAIs studied are typically small, < 100 μm in size, and contain, sometimes dominated by, Zr-, Sc-, and Y-rich minerals, including allendeite (Sc4Zr3O12), and an unnamed ((Ti,Mg,Sc,Al)3O5) mineral, davisite (CaScAlSiO6), eringaite (Ca3(Sc,Y,Ti)2Si3O12), kangite ((Sc,Ti,Al,Zr,Mg,Ca,□)2O3), lakargiite (CaZrO3), warkite (Ca2Sc6Al6O20), panguite ((Ti,Al,Sc,Mg,Zr,Ca)1.8O3), Y-rich perovskite ((Ca,Y)TiO3), tazheranite ((Zr,Ti,Ca)O2−x), thortveitite (Sc2Si2O7), zirconolite (orthorhombic CaZrTi2O7), and zirkelite (cubic CaZrTi2O7). These minerals are often associated with 50–200 nm-sized nuggets of platinum group elements. The UR CAIs occur as: (i) individual irregularly-shaped, nodular-like inclusions; (ii) constituents of unmelted refractory inclusions – amoeboid olivine aggregates (AOAs) and Fluffy Type A CAIs; (iii) relict inclusions in coarse-grained igneous CAIs (forsterite-bearing Type Bs and compact Type As); and (iv) relict inclusions in chondrules. Most UR CAIs, except for relict inclusions, are surrounded by single or multilayered Wark-Lovering rims composed of Sc-rich clinopyroxene, ±eringaite, Al-diopside, and ±forsterite. Most of UR CAIs in carbonaceous chondrites of petrologic types 2–3.0 are uniformly 16O-rich (Δ17O ∼ −23‰), except for one CH UR CAI, which is uniformly 16O-depleted (Δ 17O ∼ −5‰). Two UR CAIs in Murchison have heterogeneous Δ17O. These include: an intergrowth of corundum (∼ ‒24‰) and (Ti,Mg,Sc,Al)3O5 (∼ 0‰), and a thortveitite-bearing CAI (∼ −20 to ∼ ‒5‰); the latter apparently experienced incomplete melting during chondrule formation. In contrast, most UR CAIs in metamorphosed chondrites are isotopically heterogeneous (Δ17O ranges from ∼ −23‰ to ∼ −2‰), with Zr- and Sc-rich oxides and silicates, melilite and perovskite being 16O-depleted to various degrees relative to uniformly 16O-rich (Δ17O ∼ −23‰) hibonite, spinel, Al-diopside, and forsterite. We conclude that UR CAIs formed by evaporation/condensation, aggregation and, in some cases, melting processes in a 16O-rich gas of approximately solar composition in the CAI-forming region(s), most likely near the protoSun, and were subsequently dispersed throughout the protoplanetary disk. One of the CH UR CAIs formed in an 16O-depleted gaseous reservoir providing an evidence for large variations in Δ17O of the nebular gas in the CH CAIs-forming region. Subsequently some UR CAIs experienced oxygen isotopic exchange during melting in 16O-depleted regions of the disk, most likely during the epoch of chondrule formation. In addition, UR CAIs in metamorphosed CO and CV chondrites, and, possibly, the corundum-(Ti,Mg,Sc,Al)3O5 intergrowth in Murchison experienced O-isotope exchange with aqueous fluids on the CO, CV, and CM chondrite parent asteroids. Thus, both nebular and planetary exchange with 16O-depleted reservoirs occurred.  相似文献   

8.
Fine-grained Ca-Al-rich inclusions (FGIs) in Yamato-81020 (CO3.0) and Kainsaz (CO3.1-CO3.2) chondrites have been studied by secondary ion mass spectrometry. The FGIs from Yamato-81020 consist of aggregates of hibonite, spinel, melilite, anorthite, diopside and olivine grains with no petrographic evidence of alteration. In contrast, the FGIs from Kainsaz commonly contain alteration products such as nepheline. From replacement textures and chemical compositions of altered and unaltered FGIs, we conclude that the alteration products formed by decomposition of melilite and anorthite. All phases in the Yamato-81020 FGIs are enriched in 16O, with δ17, 18O = ∼−40‰ except for one FGI that experienced melting. Oxygen isotopic compositions of melilite, anorthite, some spinel and diopside in Kainsaz FGIs changed from δ17, 18O = ∼−40‰ toward 0‰ by aqueous alteration. Alteration products in FGIs are depleted in 16O relative to primary phases, with δ17, 18O = ∼0‰. These results show that FGIs in CO chondrites commonly had 16O-rich compositions in the solar nebula. The original 16O-rich FGIs were modified to 16O-poor compositions during aqueous alteration in the parent body.  相似文献   

9.
Summary The cooling history of the feldspars of a hypersthene-augite trachyte lava of Oki-Dogo island, Japan was investigated by optical microscope, electron microscope and X-ray microanalyzer. Anti-Rpakivi mantled feldspars in the alkaline volcanic rocks consist of anhedral plagioclase cores and subhedral to euhedral sanidine mantles. The interfaces between the cores and mantles are wavy, saw-tooth-like, or comb-like under the optical microscope, suggesting sanidine overgrowth after plagioclase was partially resorbed. Perthitic lenses or lamellae of plagioclase are also observed in the sanidine near the interfaces. After the formation of such mantled feldspars at the magmatic stage, perthitic lamellae were produced in sanidine due to subsolidus exsolution. Periodicity of the perthitic lamellae is below 10 nm.[/ab]
Zusammenfassung Die Abkühlungs-Geschichte von Feldspäten einer Hypersthen-Augit-Trachyt-Lava von der Insel Oki-Dogo, Japan, wurde mikroskopisch, elektronenmikroskopisch und mit der Mikrosonde untersucht. Anti-Rapakivi-Feldspate in den Alkali-Vulkaniten bestehen aus anidiomorphen Plagioklas-Kernen and idiomorphen Sanidin-Rändern. Die Grenzen zwischen Kernen and Randern erscheinen unter dem Mikroskop gewellt, sägezahnartig oder kammartig. Dies deutet darauf hin, daß Überwachsung mit Sanidin nach teilweiser Resorption von Plagioklas stattgefunden hat. Perthitische Linsen oder Lamellen von Plagioklas im Sanidin wurden im Grenzbereich der beiden Feldspäte beobachtet. Perthit-Lamellen im Sanidin entstanden durch Subsolidus-Entmischung nachdem die Feldspäte wahrend der magmatischen Phase gebildet worden waren. Die Periodizität der Perthit-Lamellen liegt unter 10 nm.
  相似文献   

10.
Noble gases were measured in bulk samples of the C3V chondrites Grosnaja, Vigarano, and Leoville, and in HF,HCl-insoluble residues before and after etching with HNO3. The residues were characterized by INAA and SEM. Gas components were determined, directly or by subtraction, for the following fractions: HF,HCl-solubles (?98% of the meteorite), ‘sphase Q’, a poorly characterized trace mineral that is insoluble in HCl-HF but soluble in HNO3, and an insoluble residue, consisting of ferrichromite, carbonaceous matter, and spinel.Bulk meteorites show some correlation of the noble-gas pattern with McSween's subclasses: two ‘oxidized’ C3V's—Allende (LEWIS et al, 1975) and Grosnaja— have lower Ar/Xe but higher Ne/Xe ratios than the ‘reduced’ C3V's—Vigarano and Leoville—which are transitional to LL3's and C3O chondrites in both respects. An HCl-soluble mineral of high Ar/Xr ratio seems to be responsible. In other respects, the 3 C3V's of this study resemble Allende, with only moderate differences. Phase Q contains most of the Ar, Kr, Xe, but only small amounts of Ne; the etched residues contain planetary Ne (Ne20Ne22 ? 8.5) and the controversial CCFXe component, enriched in the heavy Xe isotopes (Xe136Xe132 ? 0.4–0.5). The CCFXe is accompanied by an ‘L-Xe’ component that is enriched in the light Xe isotopes. The proportion of the two is virtually constant in C3V's. as in all other C-chondrites. in contrast to the ~ 2-fold variation in ordinary chondrites.C3V's have systematically higher Xe136Xe132 ratios, and hence higher ratios of CCFXe to planetary Xe, than do other chondrite classes. This may reflect some peculiarity in their formation conditions, favoring uptake of CCFXe.  相似文献   

11.
12.
We report instrumental neutron activation analysis determinations of 19 major, minor and trace elements in three enstatite chondrites. Based on these, and literature data on the bulk and mineral composition of enstatite chondrites, we discuss the history of the type 3 or unequilibrated enstatite chondrites, and their relationship with the other enstatite chondrites. The type 3 enstatite chondrites have E chondrite lithophile element abundances and their siderophile element abundances place them with the EH chondrites, well resolved from the EL chondrites. Moderately volatile chalcophile elements are at the low end of the EH range and Cr appears to be intermediate between EH and EL. We suggest that the type 3 enstatite chondrites are EH chondrites which have suffered small depletions of certain chalcophile elements through the loss of shock-produced sulfurous liquids. The oxygen isotope differences between type 3 and other enstatite chondrites is consistent with equilibration with the nebula gas ~30° higher than the others, or with the loss of a plagioclase-rich liquid. The mineral chemistry of the type 3 chondrites is consistent with either low temperature equilibration, or, in some instances, with shock effects.  相似文献   

13.
We report both oxygen- and magnesium-isotope compositions measured in situ using a Cameca ims-1280 ion microprobe in 20 of 166 CAIs identified in 47 polished sections of 15 CR2 (Renazzo-type) carbonaceous chondrites. Two additional CAIs were measured for oxygen isotopes only. Most CR2 CAIs are mineralogically pristine; only few contain secondary phyllosilicates, sodalite, and carbonates - most likely products of aqueous alteration on the CR2 chondrite parent asteroid. Spinel, hibonite, grossite, anorthite, and melilite in 18 CAIs have 16O-rich (Δ17O = −23.3 ± 1.9‰, 2σ error) compositions and show no evidence for postcrystallization isotopic exchange commonly observed in CAIs from metamorphosed CV carbonaceous chondrites. The inferred initial 26Al/27Al ratios, (26Al/27Al)0, in 15 of 16 16O-rich CAIs measured are consistent with the canonical value of (4.5-5) × 10−5 and a short duration (<0.5 My) of CAI formation. These data do not support the “supra-canonical” values of (26Al/27Al)0 [(5.85-7) × 10−5] inferred from whole-rock and mineral isochrons of the CV CAIs. A hibonite-grossite-rich CAI El Djouf 001 MK #5 has uniformly 16O-rich (Δ17O = −23.0 ± 1.7‰) composition, but shows a deficit of 26Mg and no evidence for 26Al. Because this inclusion is 16O-rich, like CAIs with the canonical (26Al/27Al)0, we infer that it probably formed early, like typical CAIs, but from precursors with slightly nonsolar magnesium and lower-than-canonical 26Al abundance. Another 16O-enriched (Δ17O = −20.3 ± 1.2‰) inclusion, a spinel-melilite CAI fragment Gao-Guenie (b) #3, has highly-fractionated oxygen- and magnesium-isotope compositions (∼11 and 23‰/amu, respectively), a deficit of 26Mg, and a relatively low (26Al/27Al)0 = (2.0 ± 1.7) × 10−5. This could be the first FUN (Fractionation and Unidentified Nuclear effects) CAI found in CR2 chondrites. Because this inclusion is slightly 16O-depleted compared to most CR2 CAIs and has lower than the canonical (26Al/27Al)0, it may have experienced multistage formation from precursors with nonsolar magnesium-isotope composition and recorded evolution of oxygen-isotope composition in the early solar nebula over  My. Eight of the 166 CR2 CAIs identified are associated with chondrule materials, indicating that they experienced late-stage, incomplete melting during chondrule formation. Three of these CAIs show large variations in oxygen-isotope compositions (Δ17O ranges from −23.5‰ to −1.7‰), suggesting dilution by 16O-depleted chondrule material and possibly exchange with an 16O-poor (Δ17O > −5‰) nebular gas. The low inferred (26Al/27Al)0 ratios of these CAIs (<0.7 × 10−5) indicate melting >2 My after crystallization of CAIs with the canonical (26Al/27Al)0 and suggest evolution of the oxygen-isotope composition of the inner solar nebula on a similar or a shorter timescale. Because CAIs in CR2 and CV chondrites appear to have originated in a similarly 16O-rich reservoir and only a small number of CR2 and CV CAIs were affected by chondrule melting events in an 16O-poor gaseous reservoir, the commonly observed oxygen-isotope heterogeneity in CAIs from metamorphosed CV chondrites is most likely due to fluid-solid isotope exchange on the CV asteroidal body rather than gas-melt exchange. This conclusion does not preclude that some CV CAIs experienced oxygen-isotope exchange during remelting, instead it implies that such remelting is unlikely to be the dominant process responsible for oxygen-isotope heterogeneity in CV CAIs. The mineralogy, oxygen and magnesium-isotope compositions of CAIs in CR2 chondrites are different from those in the metal-rich, CH and CB carbonaceous chondrites, providing no justification for grouping CR, CH and CB chondrites into the CR clan.  相似文献   

14.
The Zhuangzi Au deposit in the world-class Jiaodong gold province hosts visible natural gold, and pyrite as the main ore mineral, making it an excellent subject for deciphering the complex hydrothermal processes and mechanisms of gold precipitation. Three types of zoned pyrite crystals were distinguished based on textural and geochemical results from EPMA, SIMS sulfur isotopic analyses and NanoSIMS mapping. Py0 has irregular shapes and abundant silicate inclusions and was contemporaneous with the earliest pyrite–sericite–quartz alteration. It has low concentrations of As (0–0.3 wt.%), Au and Cu. Py1 precipitated with stage I mineralization shows oscillatory zoning with the bright bands having high As (0.4–3.9 wt.%), Au and Cu contents, whereas the dark bands have low contents of As (0–0.4 wt.%), Au and Cu. The oscillatory zoning represents pressure fluctuations and repeated local fluid phase separation around the pyrite crystal. The concentration of invisible gold in Py1 is directly proportional to the arsenic concentration. Py1 is partially replaced by Py2 which occurs with arsenopyrite, chalcopyrite and native gold in stage II. The replacement was likely the result of pseudomorphic dissolution–reprecipitation triggered by a new pulse of Au-rich hydrothermal fluids. The δ34S values for the three types of pyrite are broadly similar ranging from +?7.1 to +?8.8‰, suggesting a common sulfur source. Fluid inclusion microthermometry suggests that extensive phase separation was responsible for the gold deposition during stage II mineralization. Uranium–Pb dating of monazite constrains the age of mineralization to ca. 119 Ma coincident with a short compressional event around 120 Ma linked to an abrupt change in the drift direction of the subducting Pacific plate.  相似文献   

15.
Six Chinese ordinary chondrites (four of them have fallen in recent years and the trace element abundances have not yet been reported for the other two) were examined.The contents of 21 elements (Na,Cr,Mn,Sc,Se,Zn,Br,Ni,Fe,Co,Ir,Cu,Ga,As,Au,Sb,Os,W,Re,Pt,and Ru)in the magnetic fractions and 20 elements (Na,K,Ca,Sc,Cr,Mn,Fe,Co,Ni,Zn,Se,Br,La,Sm,Eu,Yb,Lu,Ir,Au,and As) in the non-magnetic fractions were de-termined by INAA. The results indicate that the 5 H-group chondrites show almost no difference in composition,but they are different from the Zhaodong L-group chondrite in elemental abundance.As a normalized element(relative to CI),the concentrations of Ga in the magnetic fractions can be used to classify ordinary chondrites(H-,L- and LL-group).The bulk composition and modal weight of each component calculated from element concentrations in different phases are in good agreement with the bulk rock analyses presented in the literature.  相似文献   

16.
High-precision measurements of the oxygen isotopic compositions of carbonates (calcite and dolomite) from five CM2 chondrites are presented and put into context of the previously determined mineralogic alteration index (MAI), which places these meteorites into an alteration sequence. The carbonate oxygen isotopic compositions range from +20.0 to +35.7‰ for δ18O, +8.0 to +17.7‰ for δ17O, and −0.7 to −2.7‰ for Δ17O. Carbonate Δ17O values are inversely correlated with MAI and track the evolution of fluid composition from higher to lower Δ17O values with increasing alteration on the CM parent body. Similar Δ17O values for calcite and dolomite fractions from the same splits of the same meteorites indicate that calcite and dolomite in each split precipitated from a single fluid reservoir. However, reversed calcite dolomite fractionations (δ18Odol − δ18Occ) indicate that the fluid was subject to processes, such as freeze-thaw or evaporation, that fractionated isotopes in a mass-dependent way. Consideration of the carbonate isotopic data in the context of previously proposed models for aqueous alteration of carbonaceous chondrites has provided important insights into both the evolving alteration conditions and the utility of the models themselves. The data as a whole indicate that the isotopic evolution of the fluid was similar to that predicted by the closed-system, two-reservoir models, but that a slightly larger matrix-water fractionation factor may apply. In the context of this model, more altered samples largely reflect greater reaction progress and thus probably indicate more extended times of fluid exposure. Petrographic observations of carbonates reveal a trend of variable carbonate morphology correlated with alteration that is also consistent with changes in the duration of fluid-rock interaction. The data can also be reconciled with fluid-flow models in a restricted region of the parent body, which is consistent with assertions that the different types of carbonaceous chondrites derive from different regions of their parent bodies. In this case, the model results for a 9-km-radius body, and our data place the location of the CM chondrite formation in a 100-m-thick zone 1 km from the surface. The size of this zone could be increased if the model parameters were adjusted.  相似文献   

17.
The C3O chondrites Kainsaz, Lancé and Ornans were studied by an acid dissolution technique, to characterize the noble-gas components in 3 mineral fractions: HF, HCl-solubles (99% of the meteorite), chromite and carbon (0.3–0.9%), and ‘phase Q’, a poorly characterized trace mineral (0.05–0.4%) containing most of the Ar, Kr, Xe. For all fractions, gas contents decline in the order Kainsaz > Lancé > Ornans; this trend parallels volatile contents but not heterogeneity of olivine composition or degree of metamorphism and seems to reflect progressively higher condensation temperatures from the solar nebula.Solubles contain nearly unfractionated Xe, and show 136Ar132Xe ratios up to 850. Hence the high ArXe ratios (200–400) of bulk C3O chondrites must be due to an HF-soluble mineral (possibly magnetite). Phase Q contains ordinary planetary gases and a Ne component of 20Ne22Ne = 10.3 ± 0.4.Chromite and carbon contain Ne of 20Ne22Ne = 8.6 ± 0.1 and ‘CCF’ xenon (a peculiar component of possibly fissiogenic origin, enriched in the heavy isotopes but accompanied by a component enriched in the light isotopes).In all primitive chondrites, both the amount and the chemical separability of CCFXe parallel the abundance of promordial noble gases and other volatiles, such as C, N, Tl, Bi and In. The close correlation of CCFXe with various properties of undoubtedly local origin (volatile content, petrologic type, presence of ferrichromite and carbon, etc.) is more consistent with a local than with an extrasolar origin of this component. A volatile superheavy element seems to be the most plausible source, but the evidence is not conclusive.  相似文献   

18.
Burnwell, EET 96031, and LAP 04575 are ordinary chondrites (OC) that possess lower than typical olivine Fa content than has been established for the H chondrites (<∼17 mol%). Mean low-Ca pyroxene Fs contents are typically lower than mean Fa content, with generally ?16 mol% Fs. We have investigated these three low-FeO chondrites by measuring their trace element abundances, oxygen isotopic compositions, and examining their three-dimensional (3D) petrography with synchrotron X-ray microtomography. We compare our results with those established for more common OC. The low FeO chondrites studied here have bulk trace element abundances that are identical to the H chondrites. From bulk oxygen isotopic analysis, we show that Burnwell, EET 96010, and LAP 04757 sampled oxygen reservoirs identical to the H chondrites. Burnwell, EET 96031, and LAP 04575 possess common 3D opaque mineral structures that could be distinct from the H chondrites, as evidenced by X-ray microtomographic analysis, but our comparison suite of H chondrites is small and unrepresentative. Overall, our data suggest a common origin for the low-FeO chondrites Burnwell, EET 96010, and LAP 04757 and the H chondrites. These three samples are simply extreme members of a redox process where a limiting nebular oxidizing agent, probably ice, reacted with material containing slightly higher amounts of metal than typically seen in the H chondrites.  相似文献   

19.
Samples are available from 37 stony meteorites falling in China. Twenty-two chondrites are examined in terms of chemical and mineral compositions, cosmogenic nuclides, formation and exposure ages, impact effect and chondrule textures. On the basis of chemical-petrologic features these chondrites are classified asE 4 (Qingzhen),H 5 (Jilin, Changde, Shuangyang, Anlong, Xinyi and Yangjang),L 6 (Renqiu, Junan, Heze, Rugao and Nei Monggol) andLL 6 (Dongtai). E 4 is characterized by high iron and sulfur, with the former occurring mainly as Feo and FeS. FromH 5 throughH 6 toLL 6, iron and nickel decrease gradually while FeO and the ratio of Fe silicate to total iron increase gradually. indicating a general increase in the orderE-H-L-LL in the degree of oxidation at the time of formation. E 4 consists mainly of enstatite and, to much less extent, free SiO2 but olivine is hardly to be found. The olivine proportions amount to 29.07, 41.98 and 51.36 percent inH 5,L 6 andLL 6 respectively, with Fa increasing from 17 to 27 percent. Recrystallization has been noticed to different degrees inH 4,H 5,L 6 andLL 6 chondrites. The extent to which the original structure disappears and the boundaries of chondrules become indistinct decreases from type 6 through type 5 to type 4, reflecting different degrees of thermal metamorphism. Major minerals in the meteorites all exhibit signs of low to medium shock metamorphism. Specific activity, depth effect and orbit effect are also measured on some chondrites that have fallen in recent years and some new information has been obtained with respect to the orbit and source region for meteorite parent bodies in space. This results show that the environment of formation ofE group may be nearer to Mars than that ofO group. Each chemical group of chondrites has its own evolutionary history, and chondritets of different chemical groups may have originated from parent bodies of different compositions. Or owing to the differentiation caused by thermal melamorphism, various kinds of meteorites may be derived from a common parent body. From this argument it is suggested that five stages may be recognized during the formation process of chondrites.  相似文献   

20.
Bulk compositions of metallic Fe-Ni from two equilibrated ordinary chondrites, Jilin (H5) and Anlong (H5), and two unequilibrated ones, GRV 9919 (L3) and GRV 021603 (H3), were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The CI-, Co-normalized abundances of siderophile and chalcophile elements of metallic Fe-Ni from the unequilibrated ordinary chondrites correlate with 50% condensation temperatures (i.e., volatility) of the elements. The refractory siderophile elements (i.e., platinum group elements, Re), Au, Ni and Co show a flat pattern (1.01×CI Co-normalized), while moderate elements (As, Cu, Ag, Ga, Ge, Zn) decrease with volatility from 0.63×CI (Co-normalized, As) to 0.05×CI (Co-normalized, Zn). Cr and Mn show deficit relative to the trend, probably due to their main partition in silicates and sulfides (nonmagnetic). Metallic Fe-Ni from the equilibrated ordinary chondrites shows similar patterns, except for strong deficit of Cr, Mn, Ag and Zn. It is indicated that these elements were almost all partitioned into silicates and/or sulfides during thermal metamorphism. The similar deficit of Cr, Mn, Ag and Zn was also found in iron meteorites. Our analyses demonstrate similar behaviors of W and Mo as refractory siderophile elements during condensation of the solar nebula, except for slight depletion of Mo in the L3 and H5 chondrites. The Mo-depletion of metallic Fe-Ni from GRV 9919 (L3) relative to GRV 021603 (H3) could be due to a more oxidizing condition of the former than the latter in the solar nebula. In contrast, the Mo-depletion of the metallic Fe-Ni from the H5 chondrites may reflect partition of Mo from metal to silicates and/or sulfides during thermal metamorphism in the asteroidal body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号