首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely accepted that basaltic magmas are products of partial fusion of periodotite within planetary mantles. As such, they provide valuable insights into the composition, structure, and processes of planetary interiors. Those compositions which approach primary melt compositions provide the most direct information about planetary interiors and serve as a starting point to understand basaltic evolution. Within the collection of lunar samples returned by the Apollo and Luna missions are homogeneous, picritic glass beads of volcanic origin. These picritic glasses are our closest approximations to primary magmas. As such, these glass beads provide a unique perspective concerning the origin of mare basalts, the characteristics of the lunar interior, and processes in the early differentiation of the Moon. We have obtained trace element data for these picritic glasses using SIMS techniques. These data and literature isotopic and experimental data on the picritic glasses are placed within the framework of mare basaltic magmatism.The volcanic glasses are very diverse in their trace element characteristics, for example, they have a wide range of REE pattern shapes and concentrations. Like the crystalline mare basalts, all picritic glasses have a negative Eu anomaly. Unlike the crystalline mare basalts, there is little correlation between the size of the Eu anomaly and overall REE concentrations. Trace element differences among the various glasses suggests that a KREEP component was incorporated into their mantle source. This implies large scale mixing of the “Lunar Magma Ocean”-derived cumulate pile. Subtle differences among glasses suggest that local mixing of sources may also have been an important process. Preservation of subtle chemical differences in the picritic glasses and crystalline basalts may be interpreted as indicating that they were produced by small to moderate degrees of partial melting and that the lunar mantle did not experience extensive melting during episodes of mare volcanism.Several lines of evidence are consistent with the view that the picritic glasses were derived from mantle sources that were compositionally distinct from the sources for crystalline mare basalts. These are parallel, but no common, liquid lines of descent; chemical differences between picritic glasses and the more primitive crystalline mare basalts; experimental studies indicating that the picritic glasses are multiply saturated at depths greater than that of the mare basalts; differences in lead isotopic data; and the mode of eruption (i.e., fire fountaining for glass beads). These data also provide circumstantial evidence that suggests that the picritic glasses were derived from a source somewhat more volatile-rich than that of the mare basalts.Several petrogenetic models are suggested by the trace element characteristics of the picritic glasses:
  • 1.(1) Partial melting of heterogeneous lunar mantle at depths greater than 300 km to produce the parental magmas (picritic) for both the mare basalts and picritic glasses. Picritic magmas represented by glass beads were erupted to the surface with small degrees of fractional crystallization while mare basalts were produced by larger degrees of fractional crystallization (15–30%) of similar (but not identical) picritic magmas.
  • 2.(2) Picritic magmas represented by the glass beads were generated at depths greater than 400 km in a volatile-enriched (relative to the mare basalt source) heterogeneous mantle while mare basalts are fractional crystallization products of picritic magmas generated at depths of less than 400 km.
  • 3.(3) The picritic magmas represented by the glass beads represent polybaric melting that initiated at depths of at least 1000 km. A primitive mantle component or less processed cumulate mantle components may have been involved in the generation of the picritic glasses in any of these models.
  相似文献   

2.
乔乐  陈剑  凌宗成 《地质学报》2021,95(9):2678-2691
火山活动是月球最主要的内动力地质作用之一,是研究月球地质历史和热演化的重要窗口,也是月球科学及探测的重点目标.本文概要总结了月球火山作用的基本原理,并重点介绍了"岩墙扩展"模型.基于此模型,列举了由于岩墙在月壳内部上升程度的不同,导致的不同形式的喷发活动,并在月表产生了一系列火山地貌特征:① 当岩墙仅扩展到浅月表、未能穿透月壳并引起喷发活动时,可能会在月表产生坑链构造、地堑或底部断裂型撞击坑;② 当岩墙穿透了整个月壳并引起爆裂式喷发活动时,会在月表产生小型火山锥、区域性火山碎屑堆积物、全月分布的微小火山玻璃、暗晕凹陷构造及环形火山碎屑堆积物;③ 当岩墙穿透了整个月壳并引起溢流式喷发活动时,随着岩浆喷发通量的逐步增高,会在月表产生小型熔岩流、月海穹窿、复合熔岩流、蜿蜒型月溪、巨型熔岩流及火山高原复合体.本文也简要介绍了在月表观测到的若干非典型火山地貌特征,包括不规则月海斑块、环形凹陷穹丘及非月海富硅质穹窿.近年来新的探月数据加深了对这些特殊火山地貌特征的认识,但是更多的地质特征及成因模型细节仍有待未来月球研究及探测去解决.  相似文献   

3.
New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo64-2) and pyroxene (Fs32Wo8En60 to Fs84-86Wo15En2-0) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (∼2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon.  相似文献   

4.
综合多源遥感数据识别提取月球正面南北纬50°之间的线性构造,重点分析月岭和月溪的影像特征、分布规律和时空关系,结合月海沉降模型分析两者的成因机制,结合地形和重力场数据预测影响月岭类型的因素。研究表明,在质量瘤盆地,月岭和月溪存在明显的时空关系和构造成因联系,两者主要由月海沉降产生的局部应力引起,前月海时期盆地的均衡状态和月海充填的几何形状可能影响了月岭的分布类型。  相似文献   

5.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

6.
J.L. Whitford-Stark 《Earth》1982,18(2):109-168
The products of volcanism on the Earth and Moon differ widely in terms of morphology, distribution, composition, and age. These differences result partly from the different thermal histories of the two bodies and partly through the different controls on volcanic eruption conditions. The controls of volcanism are here separated into three groups: (1) controls which remain constant on any one body but which differ from planet to planet: (2) parameters that are controlled by the rheology of the magma: and (3) controls which are intrinsic properties of individual eruptions and are themselves dependent upon the planetary and rheological variables. In terms of planetary variables it can be predicted that lunar volcanic morphologies are influenced by greater tephra range, hemispherical eruption clouds, lesser lithostatic pressures at corresponding depths, slower cooling, slower erosion, lesser horizontal stress differences, and no features typical of hydrosphere-magma interaction. In terms of rheology, the lunar eruptions had different rock and gas compositions, low yield strengths and viscosities, and high densities. Many lunar basalts appear to have been produced at high eruption rates, to have been derived from monogenetic volcanoes, and to have flowed in a turbulent manner.The weight of available data points to the vast majority of lunar craters being of impact origin though some dark halo craters, sinuous rille source craters, rimless pits, and craters atop domes and cones are undoubtedly of volcanic origin. Other impact craters appear to have been modified by volcanic events. Included within this latter group are the floor-fractured craters and the mare basins.Studies of volcanic morphologies on bodies other than the Earth may help isolate the effectiveness of those controls of volcanism which remain constant on any one body. Although volcanology has advanced substantially within the last few decades, much more detailed integrated scientific research is required before we are able to predict confidently the environmental hazards that result from volcanism and to understand the role of volcanism in planetary evolution.  相似文献   

7.
Highly radiogenic Pb isotope compositions determined for volcanic glass beads from the Apollo 14 soil sample 14163 are similar to those commonly determined for mare basalts and are correlated with chemical variations observed in the beads. This indicates that Pb unsupported by in-situ U decay has a similar origin in both glass beads and mare basalt samples and is likely to reflect variations of 238U/204Pb (μ) in the lunar mantle. An alternative explanation that this Pb is a result of late equilibration with the radiogenic Pb present in soil is less likely as it would imply that all other characteristics of glass beads such as their chemistry must also be a consequence of equilibration near the lunar surface. Regardless of the origin of unsupported Pb, observed variations of Pb isotope compositions in the glass beads and mare basalts appear to be a result of two component mixing between a primitive reservoir with a μ-value similar to the Earth’s mantle and KREEP with a μ-value in excess of several thousand. This range cannot be explained by the fractionation of major rock forming minerals from the crystallising Lunar Magma Ocean and instead requires substantial extraction of sulphide late in the crystallisation sequence. The proportion of sulphide required to produce the inferred range places limits on the starting μ of the Moon prior to differentiation, demanding a relatively high value of about 100-200. Low μ indicated by several basalt samples and previously analysed volcanic glass beads can be explained by the preservation of an early (but post Ferroan Anorthosite) sulphide rich reservoir in the lunar mantle, while a complete range of Pb isotope compositions observed in the glass beads and mare basalts can be interpreted as mixing between this sulphide rich reservoir and KREEP.  相似文献   

8.
Apatite has been analyzed from mare basalts, the magnesian-suite, the alkali-suite, and KREEP-rich impact-melt rocks using an electron probe microanalysis routine developed specifically for apatite. We determined that all the lunar apatite grains analyzed are predominantly fluorine rich; however, they also contain varying concentrations of chlorine and a missing structural component that, after ruling out other possibilities, we attribute to OH. Apatite grains from mare basalts are compositionally distinct from the apatite grains in the magnesian-suite, the alkali-suite, and KREEP-rich impact-melt rocks, which all had similar apatite compositions. Apatite grains in mare basalts are depleted in chlorine, and many of the analyzed grains have stoichiometry that suggests a significant OH component (i.e., >0.08 structural formula units), whereas apatite grains in the magnesian suite, alkali suite, and KREEP-rich impact melts are enriched in chlorine and do not typically have a missing structural component that could be attributed to OH (within the detection limit of 0.08 sfu). From these data, we infer that residual liquids in the mare basalts were enriched in H2O and fluorine relative to chlorine at the time of apatite crystallization, whereas residual liquids in magnesian-suite, alkali-suite, and KREEP-rich impact melts were enriched in chlorine relative to H2O and fluorine at the time of apatite crystallization. The relative volatile abundance that we determined for the mare basalts is identical to the previously determined relative volatile abundance for the lunar picritic glasses. This result indicates that the observed relative volatile abundance signature of the picritic glass source is the same as that in the mare basalt source regions. The magnesian-suite, alkali-suite, and KREEP-rich impact-melt rocks likely reflect a volatile source with different volatile abundances than the sources of mare volcanics. Moreover, the magnesian-suite, alkali-suite, and KREEP-rich impact-melt rocks may reveal the relative volatile abundance of urKREEP, the residual melt of the magma ocean. This difference in relative magmatic volatile abundance among the lithologic groups investigated cannot be explained by degassing of a single source composition (relative to magmatic volatiles). The most reasonable explanation for the compositional disparity is a difference in the relative volatile abundances in the magmatic source regions of the Moon. Therefore, we conclude that the Moon has a heterogeneous distribution of magmatic volatiles within its interior, with a chemical divide (with respect to magmatic volatiles) existing between magmas that arise by partial melting of the lunar mantle and magmas that have seen significant contamination by a KREEP component.  相似文献   

9.
Re-Os同位素体系是理解月球强亲铁元素的分布规律和示踪月球的后期增生历史的重要手段。目前人们对月球物质Re-Os同位素成分的了解还是十分有限的,已有的Re-Os同位素数据显示一些能代表月幔成分特征的月海玄武岩具有很低的Re和Os的浓度,以及类似于球粒陨石的187Os/188Os成分特征,而月球火山玻璃和月壤等表现出相对高的Re-Os丰度和相对富放射成因Re-Os同位素成分。一般认为月球月幔的Re、0s和其他强亲铁元素相对球粒陨石是非常亏损的,而地球地幔则具有相对较高的强亲铁元素丰度(0.008倍CI球粒陨石的丰度)。新的Re-Os同位素结果证明月幔确实是亏损的,但是月球和地球在太阳系演化的较晚时期都有外来的球粒陨石物质的大量加入,即后期增生(late accretion)过程,导致了月球和地球上部物质(如月球火山玻璃、月壤等)相对地富集Os同位素和强亲铁元素,这些外来物质的后期增生可能是长期和持续的,增生过程主要发生在3.9~4.4Ga。但目前仍不清楚后期增生的陨石物质是被逐渐加入的,还是在一个相对较短的时期大量加入的,因此尚需对更多的月球物质做进一步的Re-Os同位素和强亲铁元素成分的研究。  相似文献   

10.
Two new lunar mare soil simulants, NAO-2 and NAO-3, have been created in National Astronomical Observatories (NAO), Chinese Academy of Sciences. These two simulants were produced from low-titanium basalt and high-titanium basalt respectively. The chemical composition, mineralogy, particle size distribution, density, angle of internal friction, and cohesion of both simulants have been analyzed, indicating that some characteristics of NAO-2 and NAO-3 are similar to those of Apollo 14 and Apollo 11 landing site soils. NAO-2 and NAO-3 will be of great benefit to the scientific and engineering research on lunar soil.  相似文献   

11.
In order to elucidate the genesis of green and orange glasses in Apollo 15 and Apollo 17 samples of lunar rocks, two alternative hypotheses are analyzed, according to which the glasses are produced either (1) by a comet or meteorite impact (impact model) or (2) by volcanic activity (volcanic model). The green and orange glasses are clearly genetically and petrochemically autonomous, i.e., the composition of the glasses themselves differs from those of the major types of the primary rocks. The mechanisms responsible for the origin of the glasses are analyzed along with mathematical models of their genesis. The theoretically calculated size distribution of glass particles is in good agreement with those measured in Apollo 15 and Apollo 17 samples. Simulation results and the analysis of the composition and structure of the green and orange glasses lead to the conclusion that the impact hypothesis of their genesis is the most realistic.  相似文献   

12.
An Apollo 17 picritic orange glass composition has been used to experimentally investigate the conditions at which graphite would oxidize to form a CO-rich gas, and ultimately produce lunar fire-fountain eruptions. Isothermal decompression experiments run above the A17 orange glass liquidus temperature (>1350 °C) suggest that the initial CO-rich gas phase produced by graphite oxidation would be generated during magma ascent at a pressure of 40 MPa, 8.5 km beneath the lunar surface. Additional experiments with 2000 ppm S and 1000 ppm Cl showed that the presence of these dissolved gas species would not affect the depth of graphite oxidation, verifying that the first volcanic gas phase would be generated by the oxidation of graphite.A simple ideal chemical mixing model for calculating melt FeO activity in a Fe-metal/silicate melt system was tested with a series of 0.1 MPa controlled oxygen fugacity experiments. Agreement between the model and experiments allows the model to be used to calculate oxygen fugacity in picritic lunar glass compositions such as the A17 orange glass. Using this model in a reanalysis of chemical equilibria between the natural A17 orange glass melt and the metal spherules (Fe85Ni14Co1) trapped within the glass beads indicates a log oxygen fugacity of −11.2, 0.7 log units, more oxidized than previous estimates. At the A17 orange glass liquidus temperature (1350 ± 5 °C), this fO2 corresponds to a minimum pressure of 41 MPa on the graphite–C–O surface. The fact that the same critical graphite oxidation pressure was determined in decompression experiments and from the Fe–FeO activity model for the natural A17 orange glass–metal assemblage strongly supports this pressure (8.5 km depth) for volcanic gas formation in lunar basalts. Generation of a gas by oxidation of C in ascending magma is likely to have been important in getting dense lunar magmas to the surface as well as in generating fire-fountain eruptions. The vesicles common in many lunar basalts and the ubiquitous Fe-metal in these rocks are also likely generated by the oxidation of carbon. The presence of carbon in the lunar basalts and the recent discovery of ppm levels of water in lunar basalts indicate that at least parts of the lunar interior still contained volatiles at 3.9 bybp.  相似文献   

13.
月球表面的元素和物质成分分布是理解月球成岩与地质演化历史的重要线索。嫦娥一号干涉成像光谱仪(IIM)是我国首台月球探测成像光谱仪器,其获得的大量月球高光谱数据已成为我国未来探测月球成分与地质演化研究的宝贵基础数据。本文利用探月工程地面应用系统发布的IIM B版本2C级数据,开发出一套数据再定标流程,获得了较为可靠的月表相对反射率数据。我们在新校正数据的基础上开展月球表面FeO、TiO_2的反演建模,获得了全月FeO和TiO_2分布图,这些图件是进行月球地质填图的基础。校正数据反演的FeO和TiO_2分布与前人对Clementine UVVIS数据的反演结果相近,表明干涉成像光谱仪数据具有较大的应用潜力。高地的低铁岩石成分(一般小于8%)佐证了月球月壳形成的过程中的岩浆洋分异假说,而月海玄武岩的TiO_2成分变化范围较大(0~13%)则表明月海玄武岩来源于不同的月幔源区。根据嫦娥一号干涉成像光谱仪全月FeO分布图,可将月球表面物质类型总体划分为高地斜长岩和月海玄武岩,而根据TiO_2分布可以进一步将月海玄武岩划分为5种不同钛含量的玄武岩岩石类型。FeO和TiO_2在全月范围内的分布表明Apollo和Luna返回的月球样品不能够代表全月范围内的矿物成分多样性,月球岩浆演化历史比前人认为的要复杂。未来月球样品返回任务(如嫦娥五号)如能赴这些特殊地区进行取样,将很有可能返回重要的月球科学研究发现和成果。  相似文献   

14.
In the second phase of the Chang’E Program an unmanned lunar rover will be launched onto the Moon. When ground scientists get a full understanding of the chemical composition of lunar soil around the rover, they can make more detailed survey plans for the rover and various payloads onboard so as to satisfy their scientific objectives. There is an obvious relationship between the reflectance of lunar soil and its chemical characteristics. Both principal component analysis (PCA) and support vector machine (SVM) models were applied to establishing the relationship between the reflectance spectra and chemical compositions of lunar highland and mare soil samples sent back by Apollo missions 11, 12, 14, 15, 16 and 17 and measured by Lunar Soil Characterization Consortium (LSCC). PCA was used to reduce and select the features of the reflectance spectra of lunar soil samples. Then, these features were put into SVM to estimate the abundances of various chemical components in lunar soil. We also compared the results of our measurement with those obtained by the SVM model [partial least squares (PLS)] and the principal component regression (PCR) model reported in literature. Our studies showed that with the exception of TiO2, the results of prediction of the abundances of chemical compounds in lunar soil by our model are much more reliable than those reported in literature. The reflectance spectra of lunar soil are closely related to the materials from which it was derived.  相似文献   

15.
月表典型区撞击坑形态分类及分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
月球表面环形构造主要有撞击坑、火山口和月海穹窿3种,其中撞击坑分布最广泛,是研究月表环形构造的主要内容。由于月表撞击坑数量大、种类多及其形成伴随着整个月球地质的演化过程,因此这种月表地形地貌比较完整地记录了月球表面地貌随时间的改造过程以及改造类型。文中通过研究撞击坑遥感影像及形貌特征,总结归纳为简单型、碗型、平底型、中央隆起型、同心环型、复杂型及月海残留型7种撞击坑类型,用来描述月表典型区域撞击坑的形态特征。从结构和物质两方面进行了月表典型区域撞击坑的形态地貌参数提取,综合利用嫦娥一号CCD 影像数据、LROC数据,得到了该区域撞击坑形态数据(坑底、坑唇、坑壁、坑缘、溅射物覆盖层、中央峰)和形态测量数据(直径、深度、地理位置)。研究发现,LQ 4地区的撞击坑分布可分为月陆区和月海区,月陆区的撞击坑多以中小型撞击坑为主,其分布密度极高,形成年代较早,月海区撞击坑多为年轻的撞击坑,分化程度较低,分布密度也较低。  相似文献   

16.
李瑞  刘建忠  庞润连  朱丹  鞠东阳  杜蔚 《岩石学报》2022,38(4):1043-1062
由于缺少直接来自月球深部的岩石样品,实验和计算模拟是认识早期月球演化过程的有效方法和手段。20世纪70年代以来,陆续开展了大量的实验岩石学和实验地球化学工作对月球岩浆洋(lunar magma ocean,LMO)演化模型进行验证和修正。但是,学界对LMO模型中的两个关键性参数,即初始物质组成和熔融深度,仍然存在不同的认识。根据月震和重力探测数据推测的平均月壳厚度的差异、月球样品含水量的研究以及新的遥感数据解译发现月表广泛分布富镁铝尖晶石(Cr#<5)等等,直接影响我们对月球初始物质组成和LMO深度以及月球深部高压矿物相的评估。本文通过整理高温高压实验岩石学和实验地球化学在研究LMO演化方面的一系列研究成果,主要聚焦以下几个科学问题:(1)月球初始物质组成中的难熔元素和挥发分含量,以及LMO深度对月壳厚度、结晶矿物的种类及含量有着决定性的影响;(2)高压矿物相石榴子石在月球深部稳定存在的可能性及其对残余岩浆中微量元素的分配行为的制约;(3)特殊类型的月球样品(包括火山玻璃、镁质岩套等)的成因机制对月球深部物质组成具有指示意义;(4)月核的不同物质组成对LMO模型的初始成分含量,特别是微量元素的限定作用。我们以最新的观测数据和月球样品的分析结果为依据,对已有的LMO演化模型进行重新评估,提出月球深部含有石榴子石的LMO演化模型的可能性,并对该方向亟需开展的工作进行探讨。  相似文献   

17.
Regolith samples from the Apollo 15 landing site are described in terms of two major fractions, a homogeneous glass fraction and a non-homogeneous glass fraction. The proportions of different components in the homogeneous glass fraction were determined directly by chemical analyses of individual particles. They are mainly green glass, a mare-like glass, and different types of Fra Mauro and Highland type glasses. The proportions of various components in the remainder of each of the soils were determined indirectly by finding the mix of components that best fits their bulk compositions. The mixing model suggests that the Apennine Front consists mainly of rocks of low-K Fra Mauro basalt composition. These may overlie rocks with the composition of anorthositic gabbro. Green glass, which occurs widely throughout the site is believed to be derived from a green glass layer which darkens upland surfaces and lies beneath the local mare surface.  相似文献   

18.
The outer portion of the Moon including the Al-rich crust and the source regions of mare basalts was either accreted heterogeneously or was the product of widespread differentiation of an originally homogeneous source. A number of constraints make the heterogeneous accretion model unlikely; the differentiation model appears more plausible.If the differentiation model is correct, a series of cumulate rocks complimentary to the Al-rich crustal rocks must exist. The mare basalts may have been derived from such a complimentary cumulate for several reasons. For example, Philpottset al. (1973) on the basis of REE studies, suggest that Apollo 11 and 17 mare basalts were formed by partial melting of a cumulate rich in a phase(s) containing high Ti and heavy REE. The high Ti of Apollo 11 and 17 basalts is not readily explained in terms of partial melting of an undifferentiated mantle, but is consistent with partial melting of a pyroxene cumulate enriched in Fe, Ti oxides. The characteristic Fe-rich nature of mare basalts would be partly a consequence of melting of oxide cumulate minerals. It is postulated that the plagioclase-poor source region of mare basalts was enriched in an intercumulus residual liquid. During the partial melting that produced mare basalts, this material was largely incorporated into the melt, thus explaining the ancient model ages observed in most mare basalts. If the cumulate model is correct, then samples derived from the true (undifferentiated) lunar mantle have not been identified.  相似文献   

19.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

20.
The chemical compositions of tephra shards are widely utilised in a myriad of disciplines, including volcanology, petrology, tephrochronology, palaeoecology and climate studies. Previous research has raised concerns over the possible chemical alteration of microscopic (<100 µm) volcanic glass shards through standard extraction procedures, such as the widely used acid digestion method. This study subjects 10 samples of well‐characterised volcanic glasses ranging from basalt to rhyolite to three common methods used in the extraction of volcanic material from lake sediments and peats. The major element geochemistry of each sample was analysed and compared with a control group. The results of this test indicate that basaltic and andesitic glasses are highly susceptible to chemical alteration, particularly to the concentrated corrosive materials used in acid and base digestion techniques. PERMANOVA analysis of the variation within groups suggests that the oxides most susceptible to variation are alkalis from groups I and II (K2O, Na2O, CaO, MgO) and SiO2, and the most stable oxides are Al2O3 and FeO. Felsic glasses are considerably less susceptible to alteration by both acidic (HCl, HNO3, H2SO4) and alkaline (KOH) digestions. Our findings have important implications for interpreting the geochemistry of volcanic glasses. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号