首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Thermodynamic properties of PbO-SiO2 melts, obtained from published data and calculated from freezing point depressions, reflect the gradual polymerization of silicate anions in the melt as the SiO2PbO ratio is increased. The free energy of mixing curve at 1000°C has a minimum at 40 mole % SiO2 and is convex-upward between 72 and 98 mole % SiO2. The latter is an indication of metastable liquid immiscibility. The free energy minimum is correlated with the maximum in the distribution of nonbridging oxygens in the melt. In SiO2-poor melts, the activities of PbO and SiO2 (pure liquid standard states) show sharp negative deviations from ideality. The PbO activity reflects the paucity of free oxygen species in the melt whereas the SiO2 activity reflects the depolymerized state of the silicate anions. In more SiO2-rich melts, the activity of SiO2 shows a positive deviation from ideality which is qualitatively correlated to a polymerization parameter. The heat of mixing term has a minimum of ?2000 cal at 35 mole % SiO2 and a maximum of +200 cal at 90 mole % SiO2. The minimum is associated with the exothermic heat effect obtained during the reaction (O0) + (O2?) = 2(O?), whereas the maximum corresponds to the endothermic heat effect obtained when coordination polyhedra of oxygens form around the Pb cation. The entropy of mixing curve has the same form but is systematically smaller than a theoretical curve calculated on the assumption of random mixing of oxygen species. The discrepancy is due to the entropy loss obtained by the clustering of oxygen species to form complex silicate species.  相似文献   

2.
The partitioning of germanium between forsterite (Fo) and liquids in the diopside-anorthiteforsterite join was investigated by electron microprobe analysis of Ge-doped samples equilibrated at 1300°–1450°C. Germanium is somewhat incompatible in Fo relative to the haplobasaltic melts, with a grand mean for all simple partition coefficients (DFo-lGe) of 0.68 ± 0.06. For the melt composition range studied, DFo-lGe is virtually constant in isothermal series of experiments, and shows only minor overall temperature dependence. The exchange reaction partition coefficient KD = (Mg2GeO4)Fo(SiO2)l(Mg2SiO4)Fo(GeO2)l] is near unity in all cases, with a grand mean of 0.93 ± 0.11. One exploratory run at 20 kbar yielded a distinctly lower partition coefficient (DFo-lGe = 0.54 ± 0.04), which confirms the negative pressure dependence predicted by the thermodynamics of Ge ai Si exchange.These new data indicate that absolute Ge enrichment must occur in terrestrial magmas undergoing olivine fractionation, while GeSi remains nearly constant.  相似文献   

3.
Diopside-melt and forsterite-melt rare earth (REE) and Ni partition coefficients have been determined as a function of bulk compositions of the melt. Available Raman spectroscopic data have been used to determine the structures of the melts coexisting with diopside and forsterite. The compositional dependence of the partition coefficients is then related to the structural changes of the melt.The melts in all experiments have a ratio of nonbridging oxygens to tetrahedral cations (NBOT) between 1 and 0. The quenched melts consist of structural units that have, on the average, 2 (chain), 1 (sheet) and 0 (three-dimensional network) nonbridging oxygens per tetrahedral cation. The proportions of these structural units in the melts, as well as the overall NBOT, change as a function of the bulk composition of the melt.It has been found that Ce, Sm, Tm and Ni crystal-liquid partition coefficients (Kcrystal?liqi = CcrystaliCliqi) decrease linearly with increasing NBOT. The values of the individual REE crystal-liquid trace element partition coefficients have different functional relations to NBOT, so that the degree of light REE enrichment of the melts would depend on their NBOT.The solution mechanisms of minor oxides such as CO2, H2O, TiO2, P2O5 and Fe2O3 in silicate melts are known. These data have been recast as changes of NBOT of the melts with regard to the type of oxide and its concentration in the melt. From such data the dependence of crystal-liquid partition coefficients on concentration and type of minor oxide in melt solution has been calculated.  相似文献   

4.
The enthalpies of solution of a suite of 19 high-structural state synthetic plagioclases were measured in a Pb2B2O5 melt at 970 K. The samples were crystallized from analyzed glasses at 1200°C and 20 kbar pressure in a piston-cylinder apparatus. A number of runs were also made on Amelia albite and Amelia albite synthetically disordered at 1050–1080°C and one bar for one month and at 1200°C and 20 kbar for 10 hr. The component oxides of anorthite, CaO, Al2O3 and SiO2, were remeasured.The ΔH of disorder of albite inferred in the present study from albite crystallized from glass is 3.23 kcal, which agrees with the 3.4 found by Holm and Kleppa (1968). It is not certain whether this value includes the ΔH of a reversible displacive transition to monoclinic symmetry, as suggested by Helgesonet al. (1978) for the Holm-Kleppa results. The enthalpy of solution value for albite accepted for the solid solution series is based on the heat-treated Amelia albite and is 2.86 kcal less than for untreated Amelia albite.The enthalpy of formation from the oxides at 970 K of synthetic anorthite is ?24.06 ± 0.31 kcal, significantly higher than the ?23.16 kcal found by Charluet al. (1978), and in good agreement with the value of ?23.89 ± 0.82 given by Robieet al. (1979), based on acid calorimetry.The excess enthalpy of mixing in high plagioclase can be represented by the expression, valid at 970 K: ΔHex(±0.16 kcal) = 6.7461 XabX2An + 2.0247 XAnX2Ab where XAb and XAn are, respectively, the mole fractions of NaAlSi3O8 and CaAl2Si2O8. This ΔHex, together with the mixing entropy of Kerrick and Darken's (1975) Al-avoidance model, reproduces almost perfectly the free energy of mixing found by Orville (1972) in aqueous cation-exchange experiments at 700°C. It is likely that Al-avoidance is the significant stabilizing factor in the high plagioclase series, at least for XAn≥ 0.3. At high temperatures the plagioclases have nearly the free energies of ideal one-site solid solutions. The Al-avoidance model leads to the following Gibbs energy of mixing for the high plagioclase series: ΔGmix = ΔHex + RT XAbln[X2Ab(2 ? XAb)]+ XAnln[XAn(1+XAn)2]4. The entropy and enthalpy of mixing should be very nearly independent of temperature because of the unlikelihood of excess heat capacity in the albite-anorthite join.  相似文献   

5.
To better understand the process of crustal contamination/assimilation, 23 Pb isotopic compositions and 12 concentrations have been measured on lavas and basement rocks from the Edgecumbe volcanic field, SE Alaska. Measured isotopic ratios have the following ranges: 206Pb204Pb = 18.477–19.161; 207Pb204Pb = 15.562–15.679; 208Pb204Pb = 38.17–38.85. While the data form well-constrained linear arrays on Pb-Pb diagrams, no simple correlation exists with major element composition. Basaltic lavas (≤ 51 wt% SiO2) are characterized by two isotopic groups. The olivine basalt (≤ 48% SiO2) is more radiogenic than the plagioclase basalt (48–51%) which also shows more heterogeneity. In the silica range 52–55%, Pb isotopic ratios increase significantly but remain fairly constant in the range 55–70% SiO2. Lead concentrations vary from 1 ppm in the basalts to 7 ppm in the rhyodacites. Analyzed basement rocks are more radiogenic than any of the lavas (206Pb204Pb = 19.20; 207Pb204Pb = 15.65; 208Pb204Pb = 38.86. The Pb isotopic data are qualitatively consistent with the contamination process described by Myerset al. (1984). However, because of fundamental differences in the mixing relations between the Sr system studied earlier and the Pb system, the new Pb data have revealed details of the process not apparent from the Sr data alone. In particular, it has been shown that the parent magma was more primitive than originally assumed, and that two contamination events are recorded in the lavas. The first event, involving a mafic parent and different crustal contaminants, produced the intermediate and siliceous hybrids in cupolas located above the main basaltic chamber. The types of country rock intruded as well as the degree of partial fusion achieved in individual cupolas controlled the range of hybrid compositions produced while the eruption sequence was determined by the order in which the cupolas were tapped. The second contamination event produced the plagioclase basalt, the most voluminous basaltic unit, by mixing the mafic parent with the olivine basalt, an independent, primary magma. Our results suggest crustal contamination models that assume bulk assimilation of crustal end members may be too simplistic.  相似文献   

6.
7.
A differential rate equation for silica-water reactions from 0–300°C has been derived based on stoichiometry and activities of the reactants in the reaction SiO2(s) + 2H2O(l) = H4SiO4(aq)
(?aH4SiO4?t)P.T.M. = (AM)(γH4SiO4)(k+aSiO2a2H2O ? k_aH4SiO4)
where (AM) = (the relative interfacial area between the solid and aqueous phases/the relative mass of water in the system), and k+ and k? are the rate constants for, respectively, dissolution and precipitation. The rate constant for precipitation of all silica phases is log k? = ? 0.707 ? 2598T(T, K) and Eact for this reaction is 49.8 kJ mol?1. Corresponding equilibrium constants for this reaction with quartz, cristobalite, or amorphous silica were expressed as log K = a + bT + cT. Using K =k+k?, k was expressed as log k + = a + bT + cT and a corresponding activation energy calculated:
  相似文献   

8.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

9.
Calcium-45 was used as a radiotracer to measure self-diffusion coefficients for Ca in a sodium-calcium-aluminosilicate melt (29% Na2O, 5% CaO, 10% Al2O3, 56% SiO2) at temperatures in the range 1100–1400°C and pressures to 30 kbar. Calcium diffusivity (DCa) was found to depend upon both temperature and pressure in a complex but systematic manner: (?DCa?P)T is always negative and has a larger absolute value at lower temperatures; (?DCa?T)P is positive and increases with increasing pressure. The overall dependence of DCa upon T and P is given approximately by DcaT.P = [0.0025 exp(-23,107RT)] exp [P(0.7297T ? 1261.32)RT]. When expressed in terms of volume (Va) and energy (E) of activation, the results are as follows: Va ranges from 2.2 cm3/mole at 1400°C to 11.9 cm3/mole at 1100°C. and E ranges from 25.4 kcal/mole (1 kban to 49.8 kcal/mole (20 kbar).From the systematic dependence of DCa upon T and P, it is concluded that diffusion of Ca2+ in silicate melts does not take place by means of a vacant site mechanism, but is controlled instead by the amount and distribution of free volume in the melt structure.If it is assumed that the viscosity of the melt used in this study decreases with increasing pressure (Kushiro, 1976, J. Geophys. Res.81, 6351–6356) as DCa does, then the Stokes-Einstein inverse relation between viscosity and diffusivity is clearly violated, and its validity for silicate melts must be questioned. Thus, it appears that in silicate melts, unlike many liquids, viscous flow and diffusion are fundamentally different transport processes, involving different structural units.The effect of pressure on calcium diffusion is too small to invalidate kinetic models of upper mantle processes that have been based upon diffusivity values measured at 1 atm. Pressure may, however, induce significant reductions in the diffusion rates of large ions such as Rb+ or SiO4?4 in silicate melts.  相似文献   

10.
For a phase at equilibrium in which two cation species are partitioned ideally between two sub-lattice sites, the excess functions of mixing (free energy, enthalpy and entropy) are directly related to the bulk composition of the phase and ΔGE°(T, P), the standard-state intra- crystalline exchange free energy. If the phase is not at equilibrium internally, an additional ordering parameter is necessary to fix the excess free energy of mixing, GmixEX, unambiguously. Conversely, for any fixed GmixEX there exists an infinity of possible intracrystalline cation dis- tributions, only one of which is the equilibrium distribution for the specified temperature and pressure. As ideal intraphase cation ordering becomes more pronounced, GmixEX decreases. In response, the total free energy of mixing for the phase decreases progressively for non-end member compositions, approaching, at the limits of ordering, values appropriate for stabilizing compounds of intermediate composition.The model-dependent activity coefficient for component A in the phase, γAT, can be calculated for any bulk composition, XAT, either from GmixEX directly or from more basic equations involving the interrelation of chemical potentials at equilibrium. A general form for γAT is ln γAT= 1n[2(XAαXAβ)12/(XAα+XAβ)]+Y, where Xjκ denotes the mole fraction of species j in site κ. The first term on the right-hand side of this equation is the contribution to γAT from ideal intracrystalline partitioning, and is common to the several theories lately presented to model intraphase cation partitioning. It can be shown rigorously that this term contributes to a negative deviation from ideality for the bulk phase. The second term is the contribution to the macroscopic activity coefficient from non-ideal intraphase partitioning, and is related to an enthalpy of mixing, HmixN in excess of that resulting from ideal inter-site cation ordering. While the expression represented by Y can take several functional forms, the additional enthalpy can be evaluated explicitly for specific non-ideal partitioning models from the relation HmixN = 2RT(1? XAT) ∝ Y(1 ? XAT)2dXAT.In those cases, GmixEX can also be determined exactly.  相似文献   

11.
Partially serpentinized dunites and wehrlites comprise the bulk of the cumulate ultramafic unit at the North Arm Mountain massif of the Bay of Islands ophiolite complex, Newfoundland. In a suite of 59 dunites and werhlites from the base of the unit, the serpentinized portions consist of lizardite + chrysotile + brucite + (accessory) magnetite. The ratio of (lizardite + chrysotile) to brucite = ~8:2 (weight percent). Petrographic observations show that most serpentinization occurred at the expense of olivine; only limited amounts of clinopyroxene were serpentized. An estimated volume increase of 32% accompanied serpentinization of the peridotites. Reconstructions of the primary modal proportions of wehrlites (made taking this volume increase into account) contain an average of 6% more clinopyroxene and 6% less olivine than do modal reconstructions that ignore the volume increase. Mass balance calculations provide no clear evidence for appreciable metasomatism of Al2O3, CaO, FeO, MgO, or SiO2 during Serpentinization. The presence of brucite, the evidence that most serpentinization occurred at the expense of olivine, and the lack of appreciable metasomatism, suggest that the primary reaction that controlled serpentinization of the peridotites is: 2Mg2SiO2 + 3H2O ? Mg3Si2O5(OH)4 + Mg(OH)2. olivine added serpentine brucite  相似文献   

12.
The partial molal volume of silicic acid (V?(Si(OH)4)) in 0.725 M NaCl at 1°C was calculated from the measured volume change (ΔV?n) due to the neutralization of anhydrous sodium metasilicate with HCl and the V?(HCl) and V?(NaCl) obtained from the literature. V?(Si(OH)4) = 59.0 cm3mol ? 1, determined under experimental conditions of pH = 2.2, compares favorably with V?(Si(OH)4) = 58.9 cm3 mol?1 calculated from the measured volume change due to the hydrolysis of the meta-silicate salt at pH = 11 and from the partial molal volume due to electrostriction (V?elect) of water by charged Si species present in the solution at the high pH. This agreement lends support to a semiempirical model for calculating V?elect in developed by Millero (1969). V?(NaOH) = ? 5.45 cm3 mol?1 in 0.725 M NaCl needed for this calculation was also determined in this work. The rate of polymerization of Si(OH)4 at 1°C was monitored to insure that the monomer Si(OH)4 was the main Si species present during the determination of V?(Si(OH)4) by neutralization of the alkali silicate. V?(Si(OH)4) determined in this study compares favorably with the value calculated from high pressure solubility measurements.  相似文献   

13.
The conversion of secondary lead orthophosphate [PbHPO4] into chloropyromorphite [Pb5(PO4)3Cl] in ca. 10?1 M NaCl solutions has been investigated at 25°C. From the composition of the supernatant solutions, the solubility product constant for Pb5(PO4)3Cl has been calculated to be 10?84.4±0.1, corresponding to ΔG?° of ?906.2 kcal mol?1. The solution equilibria and phase relationships in the system PbCl2-PbO-P2O8-H2O are discussed along with the geological implications.  相似文献   

14.
The spectrophotometric measurements of chloro complexes of lead in aqueous HCl, NaCl, MgCl2 and CaCl2 solutions at 25°C have been analyzed using Pitzer's specific interaction equations. Parameters for activity coefficients of the complexes PbCl+, PbCl20 and PbCl3? have been determined for the various media. Values of K1 = 30.0 ± 0.6, K2 = 106.7 ± 2.1 and K3 = 73.0 ± 1.5 were obtained for the cumulative formation constants. [Pb2+ + nCl? → PbCln2?n)]. These values are in reasonable agreement with literature data. The Pitzer parameters for the PbCl ion pairs in various media were used to calculate the speciation of Pb2+ in an artificial seawater solution.  相似文献   

15.
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500–700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant (K) for the reaction NaAlSi3O8 + HClo = NaClo + 12Al2SiO5, + 52SiO2 + 12H2O Albite Andalusite Qtz. K = (aNaClo)(aH2O)1/2(aHClo) can be described by the following equation: log k = ?4.437 + 5205.6/T(K) The data from this study are consistent with experimental results reported by Montoya and Hemley (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaClo and HClo in the range 400–700°C and 1–2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KClo and HClo. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.  相似文献   

16.
17.
The solubility of rutile has been determined in a series of compositions in the K2O-Al2O3-SiO2 system (K1 = K2O(K2O + Al2O3) = 0.38–0.90), and the CaO-Al2O3-SiO2 system (C1 = CaO(CaO + Al2O3) = 0.47–0.59). Isothermal results in the KAS system at 1325°C, 1400°C, and 1475°C show rutile solubility to be a strong function of the K1 ratio. For example, at 1475°C the amount of TiO2 required for rutile saturation varies from 9.5 wt% (K1 = 0.38) to 11.5 wt% (K1 = 0.48) to 41.2 wt% (K1 = 0.90). In the CAS system at 1475°C, rutile solubility is not a strong function of C1. The amount of TiO2 required for saturation varies from 14 wt% (C1 = 0.48) to 16.2 wt% (C1 = 0.59).The solubility changes in KAS melts are interpreted to be due to the formation of strong complexes between Ti and K+ in excess of that needed to charge balance Al3+. The suggested stoichiometry of this complex is K2Ti2O5 or K2Ti3O7. In CAS melts, the data suggest that Ca2+ in excess of A13+ is not as effective at complexing with Ti as is K+. The greater solubility of rutile in CAS melts when C1 is less than 0.54 compared to KAS melts of equal K1 ratio results primarily from competition between Ti and Al for complexing cations (Ca vs. K).TiKβ x-ray emission spectra of KAS glasses (K1 = 0.43–0.60) with 7 mole% added TiO2, rutile, and Ba2TiO4, demonstrate that the average Ti-O bond length in these glasses is equal to that of rutile rather than Ba2TiO4, implying that Ti in these compositions is 6-fold rather than 4-fold coordinated. Re-examination of published spectroscopic data in light of these results and the solubility data, suggests that the 6-fold coordination polyhedron of Ti is highly distorted, with at least one Ti-O bond grossly undersatisfied in terms of Pauling's rules.  相似文献   

18.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

19.
With the configurational entropy theory of relaxation processes of Adam and Gibbs (1965), one predicts that the viscosity depends on temperature according to log η = Ae + BeTSconf, where Sconf is the configurational entropy of the liquid. Thermochemical calculations of Sconf performed for some mineral compositions show the importance of non-configurational contributions to the entropy differences between amorphous and crystalline phases. Except for the case of SiO2, the available thermodynamic data indicate that the above equation for viscosity accounts quantitatively for the experimentally determined temperature dependence of the viscosity of silicate melts. The Adam and Gibbs theory also provides a simple rationale for the non linear variation of the logarithmic viscosity with composition in mixed alkali silicate liquids at low temperatures, the minimum of viscosity resulting from the contribution of the entropy of mixing to Sconf.  相似文献   

20.
Optical and analytical studies were performed on 400 N2 + CO2 gas bearing inclusions in dolomites and quartz from Triassic outcrops in northern Tunisia. Other fluids present include brines (NaCl and KCl bearing inclusions) and rare liquid hydrocarbons. At the time of trapping, such fluids were heterogeneous gas + brine mixtures. In hydrocarbon free inclusions the N2(N2+ CO2) mole ratio was determined using two different non-destructive and punctual techniques: Raman microprobe analysis, and optical estimation of the volume ratios of the different phases selected at low temperatures. In the observed range of compositions, the two methods agree reasonably well.The N2 + CO2 inclusions are divided into three classes of composition: (a) N2(N2 + CO2) > 0,57: Liquid nitrogen is always visible at very low temperature and homogenisation occurs in the range ?151°C to ? 147°C (nitrogen critical temperature) dry ice (solid CO2) sublimates between ?75°C and ?60°C; (b) 0,20 < N2(N2 + CO2) ? 0,57: liquid nitrogen is visible at very low temperature but dry ice melts on heating; liquid and gas CO2 homogenise to liquid phase between ?51°C to ?22°C; (c) N2(N2 + CO2) ? 0,20: liquid nitrogen is not visible even at very low temperature (?195°C) and liquid and gas CO2 homogenise to liquid phase between ?22°C and ?15°C. The observed phases changes are used to propose a preliminary phase diagram for the system CO2-N2 at low temperatures.Assuming additivity of partial pressures, isochores for the CO2-N2 inclusions have been computed. The intersection of these isochores with those for brine inclusions in the same samples may give the P and T of trapping of the fluids.  相似文献   

abcEact(kJ mol -1)
Quarts1.174-2.028 x 103-415867.4–76.6
α-Cristobalite-0.7390-358668.7
β-Cristobalite-0.9360-339265.0
Amorphous silica-0.369-7.890 x 10-4343860.9–64.9
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号