首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamic calculations for selected silicate-oxide-fluorite assemblages indicate that several commonly occurring fluorite-bearing assemblages are restricted to relatively narrow ?O2-?F2 fields at constant P?T. The presence of fayalite-ferrohedenbergite-fluorite-quartz ± magnetite and ferrosalite-fluorite-quartz-magnetite assemblages in orthogneisses from Au Sable Forks, Wanakena and Lake Pleasant, New York, buffered fluorine and oxygen fugacities during the granulite facies metamorphism in the Adirondack Highlands. These buffering assemblages restrict?F2 to 10?29 ± 1 bar and ?02 to 10?16 ± 1 bar at the estimated metamorphic temperature of 1000K and pressure of 7 kbar. The assemblage biotite-magnetite-ilmenite-K-feldspar, found in the same Au Sable Forks outcrop as the fayalite-fluorite-ferrohedenbergite-quartz-magnetitie assemblage, restricts H2O fugacities to less than 103·3 bar. These fugacities limit H2 and HF fugacities to less than 101 bar for the Au Sable outcrop. The data indicate that relative to H2O, O2, H2, F2 and HF are not major species in the fluid equilibrated with Adirondack orthogneisses. The calculated F2 fugacilies are similar to the upper limits possible for plagioclase-bearing rocks and probably represent the upper ?F2 limit for metamorphism in the Adirondacks and in other granulite facies terranes.  相似文献   

2.
Electron microprobe analyses of the spinel mineral group, ilmenite and rutile have been carried out on part of the Luna 20 soil sample. The spinel group shows an almost continuous trend from MgAl8O4 to FeCr2O4 and a discontinuous trend from FeCr2O4 to Fe2TiO4. Well defined non-linear relationships exist within the spinel group for Fe-Mg substitution, for divalent (FeOFeO + MgO) versus trivalent (Cr2O3Cr2O3 + A12O3), and for divalent versus TiO2TiO2 + A12O3 + Cr2O3. For Cr-Al substitution the relationship is linear and is negative for Mg-rich spinel and positive for Fe-Ti rich spinel. In general a combination of aluminous-rich chromite and ulvöspinel in the Luna 16 samples, combined with the chromian-pleonaste in Apollo 14 define comparable major compositional trends to those observed in Luna 20. Ilmenite is present in trace amounts. It is exsolved from pleonaste and pyroxene, is present in subsolidusreduced ulvöspinel and has undergone reequilibration to produce oriented intergrowths of chromite + rutile. Primary ilmenite is among the most magnesian-rieh (6 wt.% MgO) yet found in the lunar samples. The high MgO, inferred high Cr2O3 concentrations and the iron content of rutile (2.5 wt.% FeO) suggest crystallization at high temperatures and pressures for some components of the Luna 20 soil.  相似文献   

3.
4.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

5.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

6.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

7.
The coprecipitation of Na and K was experimentally investigated in aragonite. The distribution functions were determined at pH 6.8 and 8.8 over aqueous Na and K concentrations of between 5 × 10?4and 2.0 M and temperatures of between 25 and 75°C.The mole fractions of Na and K in aragonite are related to the aqueous ratios of Na and Ca by a function of the form
log XNa2CO3,K2CO3 = C0 + C1loga2Na ? ,K?aCa2+
where C0 and C1 are constants at a given temperature. This equation was derived by a statistical model assuming a heterogeneous energy distribution for the sites of incorporation. The independence of the coprecipitation process from aqueous anion activities suggests that carbonate is the only anionic species in the solid solution.  相似文献   

8.
The distribution coefficients of Eu and Sr for plagioclase-liquid and clinopyroxene-liquid pairs as a function of temperature and oxygen fugacity were experimentally investigated using an oceanic ridge basalt enriched with Eu and Sr as the starting material. Experiments were conducted between 1190° and 1140°C over a range of oxygen fugacities between 10?8 and 10?14 atm.The molar distribution coefficients are given by the equations: log KEuPL = 3320/T?0.15 log?o2?4.22log KCPXEu = 6580/T + 0.04 log?o2?4.37logPLSr = 7320/T ? 4.62logKCPXSr = 18020/T ? 13.10. Similarly, the weight fraction distribution coefficients are given by the equations: log DPLEu =2460/T ? 0.15 log?o2 ? 3.87log DCPXEu = 6350/T + 0.04 log?o2 ? 4.49logDPLSr = 6570/T ? 4.30logDCPXSr = 18434/T ? 13.62.Although the mole fraction distribution coefficients have a smaller dependence on bulk composition than do the weight fraction distribution coefficients, they are not independent of bulk composition, thereby restricting the application of these experimental results to rocks similar to oceanic ridge basalts in bulk composition.Because the Sr distribution coefficients are independent of oxygen fugacity, they may be used as geothermometers. If the temperature can be determined independently — for example, with the Sr distribution coefficients, the Eu distribution coefficients may be used as oxygen geobarometers. Throughout the range of oxygen fugacities ascribed to terrestrial and lunar basalts, plagioclase concentrates Eu but clinopyroxene rejects Eu.  相似文献   

9.
Compositional differences between granulite facies rocks and equivalent amphibolite facies rocks and the observation of CO2-rich fluid inclusions in granulites, have led to the suggestion that CO2 must play a role in modifying the composition of deep continental crust. How CO2 effects this change has remained unclear. Using the thermodynamic properties of aqueous ions in a fluid of evolving CO2H2O ratio, it is possible to model the incongruent dissolution of feldspars under conditions appropriate for granulite facies metamorphism. The results demonstrate that dissolution will be strongly enhanced at high CO2H2O ratios, with ion solubilities being Na+ >K+ ? Ca++. This enhancement is compatible with the reported compositional contrasts between granulite and amphibolite facies rock, but requires large fluid volumes.To test the dissolution model, a detailed field and petrologic study was conducted in a well exposed granulite facies terrane in West Greenland. Strong correlation between fluid composition and bulk rock chemistry can be documented; CO2-rich regions contain rocks which consistently have low aNa2OaCaO ratios, while H2O-rich regions consistently have high aNa2OaCaO ratios. Magnetite rims on sulfide grains are ubiquitous in high ?Co2 regions and are absent in high ?H2O regions, and they provide evidence that CO2 was introduced into the region. These correlations and observations are predictable from the properties of the dissolution process. These considerations, along with observations regarding graphite petrogenesis, provide strong arguments that the total fluid volume interacting with the rock during metamorphism was very large, in some cases equaling or exceeding total rock volume. Such large fluid volumes can lead to significant compositional modification of the crust, and will mask the original protolith chemistry. Such processes should lead to Ca- and Al-enriched, Na-, K-, S- and Si-depleted residues in the deep crust.  相似文献   

10.
A parameter ΔO2?, defined as the difference between the Gibbs energy of formation of a given oxide and its aqueous cation, was used to obtain linear relationships among Gibbs energies of formation from the elements of hydroxides, oxides and aqueous metallic ions (Tardy and Garrels, 1976). Use of this parameter has now been extended to meta- and orthosilicates for which the Gibbs energies of formation of silicates from their oxides are shown to be linear functions of the ΔO2? values of their constituent cations. The function obtained for metasilicates is:
ΔGo?silicate ? ∑ΔGo?oxides = ? 23(ΔO2?cation ? ΔO2?silicon
and that for orthosilicates is:
ΔGo?silicate ? ∑ΔGo?oxides = ? 44(ΔO2?cation ? ΔO2?silicon
in which Δo? silicate is the Gibbs energy of formation from the elements of a silicate of a given cation and ∑ΔGo? oxides is the sum of the Gibbs energies of formation from the elements of the constituent oxides of the silicate considered.These functions can be used to test for consistency within and between various sources of thermodynamic data and to estimate free energy of formation values for previously unstudied species.  相似文献   

11.
Experimental quartz solubilities in H2O (Anderson and Burnham, 1965, 1967) were used together with equations of state for quartz and aqueous species (Helgesonet al., 1978; Walther and Helgeson, 1977) to calculate the dielectric constant of H2O (?H2O) at pressures and temperatures greater than those for which experimental measurements (Heger, 1969; Lukashovet al., 1975) are available (0.001 ? P ? 5 kb and 0 ? T ? 600°C). Estimates of ?H2O computed in this way for 2 kb (which are the most reliable) range from 9.6 at 600°C to 5.6 at 800°C. These values are 0.5 and 0.8 units greater, respectively, than corresponding values estimated by Quist and Marshall (1965), but they differ by <0.3 units from extrapolated values computed from Pitzer's (1983) adaptation of the Kirkwood (1939) equation. The estimates of ?H2O generated from quartz solubilities at 2 kb were fit with a power function of temperature, which was then used together with equations and data given by Helgeson and Kirkham (1974a,b, 1976) Helgesonet al. (1981), and Helgeson (1982b, 1984) to calculate Born functions, Debye Hückel parameters, and the thermodynamic properties of Na+, K+, Mg++, Ca++, and other aqueous species of geologic interest at temperatures to 900°C.  相似文献   

12.
A thermodynamic model for concentrated brines has been developed which is capable of predicting the solubilities of many of the common evaporite minerals in chloro-sulfate brines at 25°C and 1 atm. The model assumes that the behaviour of the mean stoichiometric ionic activity coefficient in mixtures of aqueous electrolytes can be described by the Scatchard deviation function and Harned's Rule. In solutions consisting of one salt and H2O, the activity coefficient is described by the expression logλ4plusm;=-|z+z? √ 1/c1+a?B √ I) + 2(V+V?/v)Bi?l where a? and B? salt specific parameters obtained from data regression. In a mixture of n electrolytes and H2O, B? for the ith component is given by Bi?i=B i?i+σ αijyj where αij is a (constant) mixing parameter characterizing the interaction of the i and j components and yj is the ionic strength fraction of the jth component. The activity of H2O is obtained from a Gibbs-Duhem integration and does not require any additional parameters or assumptions. In this study, parameters have been obtained for the systems NaCl-KCl-MgCl2-CaCl2-H2O and NaCl-MgSO4-H2O at 25°C and 1 atm. Computed solubility curves and solution compositions predicted for invariant points in these systems agree well with the experimental data. The model is flexible and easily extended to other systems and to higher temperatures.  相似文献   

13.
The diffusivity of oxygen was determined in melts of Jadeite (NaAlSi2O6) and diopside (CaMgSi2O6) compositions using diffusion couples with 18O as a tracer. In the Jadeite melt, the diffusivity of oxygen increases from 6.87?0.25+0.28 × 10?10cm2/sec at 5 Kb to 1.32 ± 0.08 × 10?9cm2/sec at 20 Kb at constant temperature (1400°C), whereas in the diopside melt at 1650°C, the diffusivity decreases from 7.30?0.180.29 × 10?7cm2/sec at 10 Kb to 5.28?0.55+0.60 × 10?7cm2/sec at 17 Kb. These results demonstrate that the diffusivity is inversely correlated with the viscosity of the melt. For the jadeite melt, in particular, the inverse correlation is very well approximated by the Eyring equation using the diameter of oxygen ions as a unit distance of translation, suggesting that the viscous flow is rate-limited by the diffusion of individual oxygen ions. In the diopside melt, the activation volume is slightly greater than the molar volume of oxygen ion, indicating that the individual oxygen ion is the diffusion unit. The negative activation volume obtained for the jadeite melt is interpreted as the volume decrease associated with a diffusive jump of an oxygen ion due to local collapse of the network structure.  相似文献   

14.
Glasses from submarine lavas recovered by the ALVIN submersible from the Galapagos Spreading Center (GSC) near 86°W have been analyzed by electron microprobe for major elements and by high-temperature mass spectrometry for volatiles. The samples studied range in composition from basalt to andesite and are more evolved than typical MORBs. Previous studies indicate that they are related to normal MORB by extensive crystal fractionation in small, isolated magma chambers. The H2O, Cl and F contents of these lavas are substantially higher than any previously reported for MORBs. H2O, Cl and F abundances increase linearly with P2O5 content, which is used as an indicator of the extent of crystal fractionation. The Fe2O3(FeO + Fe2O3) ratios measured in the andesite glasses progressively decrease with increasing P2O5 content and are probably related to fractionation of Fe-Tioxides. Reduced carbon gas species, principally CH4 and CO, were discovered in these glasses. The presence of reduced carbon species in GSC glasses may be indicative of a more reduced oxidation state of the upper mantle than is commonly assumed.  相似文献   

15.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

16.
It is proposed that the ‘M value’ of an igneous rock should be 100Mg/(Mg + ΣFe) and that the ‘Mg value’ should be 100Mg/(Mg + Fe2+). A plea is made to standardize any necessary corrections for Fe2O3 so that Fe2O3(Fe2O3 + FeO) = 02 for basic rocks.  相似文献   

17.
Studies of the pedogenic iron oxyhydroxides in suites of latest Holocene to middle Pleistocene soils formed on fluvial deposits of the transverse ranges, southern California, indicate that the content and composition of iron oxyhydroxide change in a systematic manner. Analysis of total secondary free iron oxides (dithionite extractable, Fe2O3d) and ferrihydrite (oxalate extractable, Fe2O3o) shows that (1) a single-logarithmic model (Y = a + b log X) or double logarithmic model (log Y = a + b log X), where Y is the total mass of pedogenic Fe oxides (g/cm2-soil column) and X is soil age, describes the rate of increase in Fe2O3d with time; (2) the Fe2O3d content correlates linearly with soil reddening and clay content; (3) the Fe2O3oFe2O3d ratio, which indicates the degree of Fe oxide crystallinity, is moderately high to very high (0.22–0.58) in middle Holocene to latest Pleistocene soils and progressively decreases to less than 0.10 in older soils; (4) the value of the Fe2O3oFe2O3d ratio also appears to be infuenced by climate; and (5) temporal changes in Fe oxide content and mineralogy are accompanied by related, systematic changes in clay mineralogy and organic matter content. These relationships are attributed to a soil environment that must initially favor ferrihydrite precipitation and/or organic matter-Fe complexation. Subsequent transformation to hematite causes increasingly intense reddening and a concomitant decrease in the Fe2O3oFe2O3d ratio. The results demonstrate that iron oxide analysis is useful for numerical age studies of noncalcic soils and shows potential as an indicator of paleoclimates.  相似文献   

18.
The uptake of F by aragonite is attributed to the ion-exchange process, in which one CO32? ion in the structure is replaced by two F? ions. Under the equilibrium condition at 15° C and 1 atm., the partition of F between aragonite and aqueous solution is described by:
log ([F]aF)=1.95 + 0.54 log aCa
were [F] denotes the F content of aragonite in mol/g, and aF and aCa are the aqueous activities of F? and Ca2+, respectively. The equation was successfully applied to estimating the F content of marine aragonite.  相似文献   

19.
Megacrysts and polymineralic fragments of extraordinary diversity from a Tertiary monchiquitic dyke of Ubekendt Ejland comprise three groups: (1) Cr-diopside-fassaitic diopside + olivine, Fo90.5?81.5 + CrAl spinels. (II) Fassaitic salite-ferrisalite + KTi-pargasite-ferropargasite + apatite + AlTi-magnetite, (III) Scapolite + hyalophane + potassium feldspar + nepheline + analcime. By comparison with mineralogy and phase relations in the host rock and experimental data from alkaline rocks the megacrysts are related to a sequence of crystallization from primitive monchiquitic to potassic phonolitic magmas rich in H2O and CO2 at 5–11 kb. Group I megacrysts formed at temperatures of 1300-1150°C and group II between ? 1150–?800°C and fo2 < 10?9 bar at the latter temperature. High Pco2 may have stabilized the scapolite in the more evolved liquid and K-feldspar and nepheline began to crystallize at ca. 800°C possibly together with the ferrisalite.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号