首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bevan and Axon (1980) proposed that polycrystalline γ (taenite) in the unequilibrated (H3) chondrite Tieschitz is a relic of rapid, non-equilibrium solidification of Fe-Ni-S melts during chondrule formation. Scott and Rajan (1980) dismissed our observations and conclusions. Here we defend and clarify our position. Grain boundaries as observed in polycrystalline γ(taenite) could not have been established either during slow, sub-solidus cooling of homogeneous γ(taenite), or, in the absence of γ/γ grain-boundary α precipitates, by deformation and annealing (hot working).  相似文献   

2.
We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, implying that each group formed from a single molten metallic pool or core. However, these pools or cores differed considerably in their S concentrations, which affect partition coefficients and crystallization conditions significantly. The silicate-bearing iron meteorite groups, IAB and IIE, have textures and poorly defined elemental trends suggesting that impacts mixed molten metal and silicates and that neither group formed from a single isolated metallic melt. Advances in the understanding of the generation of the Widmanstätten pattern, and especially the importance of P during the nucleation and growth of kamacite, have led to improved measurements of the cooling rates of iron meteorites. Typical cooling rates from fractionally crystallized iron meteorite groups at 500–700 °C are about 100–10,000 °C/Myr, with total cooling times of 10 Myr or less. The measured cooling rates vary from 60 to 300 °C/Myr for the IIIAB group and 100–6600 °C/Myr for the IVA group. The wide range of cooling rates for IVA irons and their inverse correlation with bulk Ni concentration show that they crystallized and cooled not in a mantled core but in a large metallic body of radius 150±50 km with scarcely any silicate insulation. This body may have formed in a grazing protoplanetary impact. The fractionally crystallized groups, according to Hf–W isotopic systematics, are derived originally from bodies that accreted and melted to form cores early in the history of the solar system, <1 Myr after CAI formation. The ungrouped irons likely come from at least 50 distinct parent bodies that formed in analogous ways to the fractionally crystallized groups. Contrary to traditional views about their origin, iron meteorites may have been derived originally from bodies as large as 1000 km or more in size. Most iron meteorites come directly or indirectly from bodies that accreted before the chondrites, possibly at 1–2 AU rather than in the asteroid belt. Many of these bodies may have been disrupted by impacts soon after they formed and their fragments were scattered into the asteroid belt by protoplanets.  相似文献   

3.
The aubrites are nearly monomineralic enstatite pyroxenites, consisting mostly of nearly FeO-free enstatite, with minor albitic plagioclase, nearly FeO-free diopside and forsterite, metallic Fe,Ni, troilite, and a host of rare accessory minerals, many unknown from Earth, that formed under highly reducing conditions. As a result, many of the normally lithophile elements such as Ti, Cr, Mn, Na, etc. behave partly as chalcophiles (i.e., occur in sulfides), and Si is partly siderophile and occurs in metallic Fe,Ni. Aubrites must therefore have formed in a very unique part of the solar nebula, possibly within 1 AU of the Sun. While of the 27 aubrites, 15 are fragmental breccias, 6 are regolith breccias, and 6 are described as non-brecciated, their ingredients are clearly of igneous origin and formed by melting and fractional crystallization, possibly of a magma ocean. This is indicated by the occurrence of a variety of lithic clasts of igneous origin, and by the REE and other trace element distributions. Their highly reduced nature and their oxygen isotopic compositions suggest close kinship to the enstatite chondrites. However, they did not form from known EH or EL chondrites on their parent bodies. Rather, they formed from enstatite chondrite-like material on at least two separate parent bodies, the Shallowater parent body and, for all other aubrites, on the aubrite parent body. Visible and near-infrared reflectance spetra of asteroids suggest that the aubrite parent bodies may be asteroids of the E-type and perhaps the E(II) sub-class, such as 3103 Eger and 2867 Steins (the target of the Rosetta Mission). If aubrites formed by the melting and fractional crystallization of enstatite chondrite-like parent lithologies, which should have contained ~10 vol% plagioclase, then meteorites of enstatite-plagioclase basaltic composition should exist, which is not the case. These early basaltic melts may have been removed from the aubrite parent body by explosive pyroclastic volcanism, and these small pyroclasts would have been destroyed in space long ago. Age dates suggest that the aubrites formed very early in the history of the solar system, within a few Ma of CAI formation, and that the heat sources for heating and melting of their parent bodies were, most likely, short-lived radionuclides such as 26Al and, perhaps, 60Fe. Finally, attention has been drawn to the surface composition of Mercury of low bulk FeO and of nearly FeO-free enstatite, perhaps with plagioclase, diopside and sulfide. While known aubrites clearly did not originate from Mercury, recent calculations suggest that several percent of high-speed ejecta from Mercury reach Earth. This is only factors of 2–3 less than typical launches from Mars and, since there are now 53 Martian meteorites in our collections, meteoriticists should be alert to the potential discovery of a genuine meteorite from Mercury which, superficially, should resemble aubrites. However, recent results from the Neutron Spectrometer of the Messenger Flyby of Mercury have been interpreted to suggest that the planet’s surface may, in fact, contain abundant Fe–Ti-oxides and, if true, a meteorite from Mercury should not resemble any currently known meteorite type.  相似文献   

4.
In three brecciated meteorites, Bencubbin, Cumberland Falls and Plainview, the oxygen isotopic compositions of different rock types within each meteorite were determined to seek genetic relationships between them. In all cases the isotopic compositions are not consistent with derivation from a single parent body. There is no evidence that chondrites and achondrites could be derived from a common parent body. The chondritic inclusions in Bencubbin and Cumberland Falls cannot be identified with any of the ordinary chondritic meteorites. The carbonaceous chondritic fragments in Bencubbin are smilar to, but not identical with, C2 meteorites. The achondritic portion of Bencubbin has a very unusual isotopic composition, which, along with its close relative Weatherford, sets it in a class distinctly apart from other achondrites. Lithic fragments in brecciated meteorites provide a wider range of rock types than is represented by known macroscopic meteorites. Collisions between some meteorite parent bodies were of sufficiently low velocity that fragments of both are preserved in breccias.  相似文献   

5.
The 182Hf-182W isotopic systematics of Ca-Al-rich inclusions (CAIs), metal-rich chondrites, and iron meteorites were investigated to constrain the relative timing of accretion of their parent asteroids. A regression of the Hf-W data for two bulk CAIs, various fragments of a single CAI, and carbonaceous chondrites constrains the 182Hf/180Hf and εW at the time of CAI formation to (1.07 ± 0.10) × 10−4 and −3.47 ± 0.20, respectively. All magmatic iron meteorites examined here have initial εW values that are similar to or slightly lower than the initial value of CAIs. These low εW values may in part reflect 182W-burnout caused by the prolonged cosmic ray exposure of iron meteorites, but this effect is estimated to be less than ∼0.3 ε units for an exposure age of 600 Ma. The W isotope data, after correction for cosmic ray induced effects, indicate that core formation in the parent asteroids of the magmatic iron meteorites occurred less than ∼1.5 Myr after formation of CAIs. The nonmagmatic IAB-IIICD irons and the metal-rich CB chondrites have more radiogenic W isotope compositions, indicating formation several Myr after the oldest metal cores had segregated in some asteroids.Chondrule formation ∼2-5 Myr after CAIs, as constrained by published Pb-Pb and Al-Mg ages, postdates core formation in planetesimals, and indicates that chondrites do not represent the precursor material from which asteroids accreted and then differentiated. Chondrites instead derive from asteroids that accreted late, either farther from the Sun than the parent bodies of magmatic iron meteorites or by reaccretion of debris produced during collisional disruption of older asteroids. Alternatively, chondrites may represent material from the outermost layers of differentiated asteroids. The early thermal and chemical evolution of asteroids appears to be controlled by the decay of 26Al, which was sufficiently abundant (initial 26Al/27Al >1.4 × 10−5) to rapidly melt early-formed planetesimals but could not raise the temperatures in the late-formed chondrite parent asteroids high enough to cause differentiation. The preservation of the primitive appearance of chondrites thus at least partially reflects their late formation rather than their early and primitive origin.  相似文献   

6.
Portales Valley, Sombrerete, and Northwest Africa (NWA) 176 are three unrelated meteorites, which consist of silicate mixed with substantial amounts of metal and which likely formed at elevated temperatures as a consequence of early impacts on their parent bodies. Measured 39Ar-40Ar ages of these meteorites are 4477 ± 11 Ma and 4458 ± 16 Ma (two samples of Portales Valley), 4541 ± 12 Ma, and 4524 ± 13 Ma, respectively (Ma = million years; all one-sigma errors). The Ar-Ar data for Portales Valley show no evidence of later open system behavior suggested by some other chronometers. Measured 129I-129Xe ages of these three meteorites are 4559.9 ± 0.5 Ma, 4561.9 ± 1.0 Ma, and ∼4544 Ma, respectively (relative to Shallowater = 4562.3 ± 0.4 Ma). From stepwise temperature release data, we determined the diffusion characteristics for Ar and Xe in our samples and calculated approximate closure temperatures for the K-Ar and I-Xe chronometers. Adopting results and interpretations about these meteorites from some previous workers, we evaluated all these data against various thermal cooling models. We conclude that Portales Valley formed 4560 Ma ago, cooled quickly to below the I-Xe closure temperature, then cooled deep within the parent body at a rate of ∼4 °C/Ma through K-Ar closure. We conclude that Sombrerete formed 4562 Ma ago and cooled relatively quickly. NWA 176 likely formed and cooled quickly ∼4544 Ma ago, or later than formation times of most meteorite parent bodies. For all three meteorites, the Ar-Ar ages are in better agreement with I-Xe ages and preferred thermal models if we increase these Ar-Ar ages by ∼20 Ma. Such age corrections would be consistent with probable errors in 40K decay parameters in current use, as suggested by others. The role of impact heating and possible disruption and partial reassembly of meteorite parent bodies to form some meteorites likely was an important process in the early solar system.  相似文献   

7.
Silicate-bearing iron meteorites differ from other iron meteorites in containing variable amounts of silicates, ranging from minor to stony-iron proportions (∼50%). These irons provide important constraints on the evolution of planetesimals and asteroids, especially with regard to the nature of metal–silicate separation and mixing. I present a review and synthesis of available data, including a compilation and interpretation of host metal trace-element compositions, oxygen-isotope compositions, textures, mineralogy, phase chemistries, and bulk compositions of silicate portions, ages of silicate and metal portions, and thermal histories. Case studies for the petrogeneses of igneous silicate lithologies from different groups are provided. Silicate-bearing irons were formed on multiple parent bodies under different conditions. The IAB/IIICD irons have silicates that are mainly chondritic in composition, but include some igneous lithologies, and were derived from a volatile-rich asteroid that underwent small amounts of silicate partial melting but larger amounts of metallic melting. A large proportion of IIE irons contain fractionated alkali-silica-rich inclusions formed as partial melts of chondrite, although other IIE irons have silicates of chondritic composition. The IIEs were derived from an H-chondrite-like asteroid that experienced more significant melting than the IAB asteroid. The two stony-iron IVAs were derived from an extensively melted and apparently chemically processed L or LL-like asteroid that also produced a metallic core. Ungrouped silicate-bearing irons were derived from seven additional asteroids. Hf–W age data imply that metal–silicate separation occurred within 0–10 Ma of CAI formation for these irons, suggesting internal heating by 26Al. Chronometers were partly re-set at later times, mainly earlier for the IABs and later for the IIEs, including one late (3.60 ± 0.15 Ga) strong impact that affected the “young silicate” IIEs Watson (unfractionated silicate, and probable impact melt), Netschaëvo (unfractionated, and metamorphosed), and Kodaikanal (fractionated). Kodaikanal probably did not undergo differentiation in this late impact, but the similar ages of the “young silicate” IIEs imply that relatively undifferentiated and differentiated materials co-existed on the same asteroid. The thermal histories and petrogeneses of fractionated IIE irons and IVA stony irons are best accommodated by a model of disruption and reassembly of partly molten asteroids.  相似文献   

8.
Whereas most radiometric chronometers give formation ages of individual meteorites >4.5 Ga ago, the K–Ar chronometer rarely gives times of meteorite formation. Instead, K–Ar ages obtained by the 39Ar–40Ar technique span the entire age of the solar system and typically measure the diverse thermal histories of meteorites or their parent objects, as produced by internal parent body metamorphism or impact heating. This paper briefly explains the Ar–Ar dating technique. It then reviews Ar–Ar ages of several different types of meteorites, representing at least 16 different parent bodies, and discusses the likely thermal histories these ages represent. Ar–Ar ages of ordinary (H, L, and LL) chondrites, R chondrites, and enstatite meteorites yield cooling times following internal parent body metamorphism extending over ∼200 Ma after parent body formation, consistent with parent bodies of ∼100 km diameter. For a suite of H-chondrites, Ar–Ar and U–Pb ages anti-correlate with the degree of metamorphism, consistent with increasing metamorphic temperatures and longer cooling times at greater depths within the parent body. In contrast, acapulcoites–lodranites, although metamorphosed to higher temperatures than chondrites, give Ar–Ar ages which cluster tightly at ∼4.51 Ga. Ar–Ar ages of silicate from IAB iron meteorites give a continual distribution across ∼4.53–4.32 Ga, whereas silicate from IIE iron meteorites give Ar–Ar ages of either ∼4.5 Ga or ∼3.7 Ga. Both of these parent bodies suffered early, intense collisional heating and mixing. Comparison of Ar–Ar and I–Xe ages for silicate from three other iron meteorites also suggests very early collisional heating and mixing. Most mesosiderites show Ar–Ar ages of ∼3.9 Ga, and their significantly sloped age spectra and Ar diffusion properties, as well as Ni diffusion profiles in metal, indicate very deep burial after collisional mixing and cooling at a very slow rate of ∼0.2 °C/Ma. Ar–Ar ages of a large number of brecciated eucrites range over ∼3.4–4.1 Ga, similar to ages of many lunar highland rocks. These ages on both bodies were reset by large impact heating events, possibly initiated by movements of the giant planets. Many impact-heated chondrites show impact-reset Ar–Ar ages of either >3.5 Ga or <1.0 Ga, and generally only chondrites show these younger ages. The younger ages may represent orbital evolution times in the asteroid belt prior to ejection into Earth-crossing orbits. Among martian meteorites, Ar–Ar ages of nakhlites are similar to ages obtained from other radiometric chronometers, but apparent Ar–Ar ages of younger shergottites are almost always older than igneous crystallization ages, because of the presence of excess (parentless) 40Ar. This excess 40Ar derives from shock-implanted martian atmosphere or from radiogenic 40Ar inherited from the melt. Differences between meteorite ages obtained from other chronometers (e.g., I–Xe and U–Pb) and the oldest measured Ar–Ar ages are consistent with previous suggestions that the 40K decay parameters in common use are incorrect and that the K–Ar age of a 4500 Ma meteorite should be possibly increased, but by no more than ∼20 Ma.  相似文献   

9.
U-Th-Pb isotopic data are reported for mineral fractions, individual chondrules and fractions of chondrule fragments from the equilibrated ordinary chondrite Richardton (H5). Chondrules and milligram-sized fractions of pyroxene-rich chondrule fragments contain highly radiogenic Pb and concordant or nearly concordant U-Th-Pb isotopic systems, and are suitable for precise Pb-Pb age determinations. Olivine and sulfide have low U concentrations and contain less radiogenic Pb. The ages of individual chondrules, pyroxene-rich and phosphate fractions are determined using U-Pb and Pb-Pb isochron and model date calculations. The Pb-Pb isochron date of 4562.7 ± 1.7 Ma of the Richardton chondrules and chondrule fragments is resolved from the Pb-Pb isochron date of 4550.7 ± 2.6 Ma obtained from multiple phosphate fractions. Possible biases of the isochron dates due to single-stage approximation of multi-stage evolution, contamination with modern common Pb, and disturbance to the system by reheating, are examined and are found to be insignificant. The chondrule and phosphate dates are interpreted as the timing of cessation of Pb diffusion during cooling following metamorphism in chondrite parent bodies. The difference in estimated closure temperatures, ∼950-1150 K for pyroxenes, and 700-800 K for phosphates (temperature estimates are based on published diffusion rates for Pb in pyroxenes and apatite), allows evaluation of the average cooling rate at 26 ± 13 K/million years for the Richardton parent body over the period of 4563-4551 my. Thermal modeling of the H-chondrite parent body (which is assumed to be asteroid 6 Hebe, heated by decay of 26Al) suggests a scenario in which accretion initiated at 1.7 m.y. after formation of calcium-aluminum-rich inclusions and continued for 3.5 m.y.  相似文献   

10.
The physical properties of the stone meteorites provide important clues to understanding the formation and physical evolution of material in the Solar protoplanetary disk as well providing indications of the properties of their asteroidal parent bodies. Knowledge of these properties is essential for modeling a number of Solar System processes, such as bolides in planetary atmospheres, the thermal inertia of atmosphereless solid body surfaces, and the internal physical and thermal evolution of asteroids and rock-rich icy bodies. In addition, insight into the physical properties of the asteroids is important for the design of robotic and crewed reconnaissance, lander, and sample return spacecraft missions to the asteroids. One key property is meteorite porosity, which ranges from 0% to more than 40%, similar to the range of porosities seen in asteroids. Porosity affects many of the other physical properties including thermal conductivity, speed of sound, deformation under stress, strength, and response to impact. As a result of the porosity, the properties of most stone meteorites differ significantly from those of compact terrestrial rocks, whose physical properties have been used in many models of asteroid behavior. A few physical properties, such as grain density, magnetic susceptibility, and heat capacity are not functions of porosity. Taken together, the grain density and the magnetic susceptibility can be used to classify unweathered or minimally weathered ordinary chondrites. This provides a rapid screening technique to identify heterogeneous samples, classify new samples, and identify misclassified meteorites or interlopers in strewn fields.  相似文献   

11.
撞击作用发生在太阳系形成和演化的所有阶段,是最基本的地质过程之一。陨石可以从微观尺度记录下这些重要的过程。在所有陨石族群中,L群普通球粒陨石保留了最完备的冲击变质记录,对撞击发生的时间、冲击过程中的物理条件提供了重要制约。矿物学证据表明,在太阳系形成100 Ma内,L群陨石母体可能发生一次撞击裂解事件,并在随后重组。4.48 Ga左右,原始小行星带经历大范围的撞击作用,这一事件也记录于L群普通球粒陨石中,可能是由月球大撞击事件溅射的大量碎屑进入到原始主小行星带引起。约800 Ma,包括L群陨石母体在内的内太阳系部分天体经历了同时期撞击事件,可能由这一时期裂解的大质量小行星产生的溅射物引发。L群陨石母体在~465 Ma发生撞击裂解,这一事件在L群陨石中保留了丰富的矿物学、年代学记录,并在地球全球奥陶纪地层发现相关信息。综合与该事件相关的所有L群陨石冲击变质特征,本文认为该裂解事件是由一颗大直径(18~22 km)石陨石质小行星,以较低速率(5~6 km/s)撞击导致。同位素年代学数据表明,L群普通球粒陨石母体很可能未受到晚期大撞击事件的影响,这难以用L群陨石母体过小予以解释。可能的原因有...  相似文献   

12.
陨石年代学研究中常用定年工具包括短半衰期和长半衰期放射性同位素体系,其中前者可以给出陨石形成的相对年龄,而后者则可以给出绝对形成年龄。在长半衰期体系中,PbP-b法是目前能获得高精度可靠年龄的最有效方法。普通球粒陨石Sem arkona是最不平衡的LL3.0型陨石,受后期热变质的影响很小,因此其年龄研究对反演陨石起源有重要意义。在本文中,对Sem arkona中球粒用不同的化学浸洗流程,并测定浸洗溶液和残渣中UT-hP-b同位素组成,其中浸洗后的残渣均给出相对较高的206Pb/204Pb比值,表明其中含有较多的放射成因Pb同位素组成,这些残渣构成PbP-b等时线,给出年龄为(4566.9±5.8)M a,M SW D=26,与207Pb/206Pb模式年龄在误差范围内一致。尽管Sem arkona陨石可能经历了后期蚀变的影响,但前人对陨石变质温度的研究结果表明,热变质温度并未足以使球粒中Pb同位素体系重置,因此获得的年龄代表Sem arkona陨石球粒的形成年龄。  相似文献   

13.
It appears that the highly unequilibrated Bishunpur ordinary chondrite preserves phase relations acquired during solar nebular processes to a relatively high degree; metamorphic temperatures may not have exceeded 300–350°C. The major categories of metal are: 3 kinds of metal in the metal matrix, three kinds in chondrule interiors and 2 kinds in chondrule rims. The fine-grained matrix metal is highly variable in composition: the kamacite Co content (7.8 ± 2.0 mg/g) is within the L-group range (6.7–8.2 mg/g) but extends well above and below; its Ni content (38 ± 5 mg/g) is considerably lower than in more equilibrated chondrites and taenite is Ni-rich ( > 450 mg/g) and unzoned. These compositions imply equilibration at very low temperatures of about 300–350°C. It seems unlikely that volume diffusion could account for the observed relatively unzoned phases; a better model involves mass transport by grain boundary diffusion and grain growth at the indicated temperatures. We find no evidence that the matrix was ever at higher temperatures. Large (50–650 μm) polycrystalline metal aggregates consisting of individually zoned crystals are also found in the matrix; they probably represent clusters formed in the solar nebula. A few large (50–250 μm) round monocrystalline grains are also present in the matrix.Metal-bearing chondrules tend to be highly reduced; they contain low-Ni metal that occasionally contains Si and/or Cr. Silicates in these chondrules tend to have low FeO(FeO + MgO) ratios. The Si-rich metal grains are never in contact with silicates and are always surrounded by troilite with a poorly characterized Ca, Cr-sulfide at the metal-troilite interface; they appear to be high temperature nebular condensates that avoided oxidation even during the chondrule forming process. Silicon contents drop below our detection limit when the sulfide coating is absent. Much more common in chondrule interiors are Si-free spheroidal metal grains not associated with sulfides. These have Ni and Co contents very similar to the Si-bearing grains, and appear to be oxidized variants of the same material. The third class of chondrule metal is fine ( ~1 μm) dusty grains inside individual olivine grains. These seem to reflect high temperature in situ reduction of FeO from the olivine.The composition of kamacite is different in sulfide-rich and sulfide-poor chondrule rims and in both cases it is dissimilar to the compositions in the chondrule interiors and matrix; this indicates that chondrule rims could not have resulted from reactions with the matrix, but are primary features acquired prior to accretton.  相似文献   

14.
We have analyzed the H4 ordinary chondrite Forest Vale for polycyclic aromatic hydrocarbons (PAHs) using two-step laser mass spectrometry (L2MS) and for amino acids using a standard chromatographic method. Indigenous PAHs were identified in the matrices of freshly cleaved interior faces but could not be detected in pulverized silicates and chondrules. No depth dependence of the PAHs was found in a chipped interior piece. Amino acids, taken from the entire sample, consisted of protein amino acids that were nonracemic, indicating that they are terrestrial contaminants. The presence of indigenous PAHs and absence of indigenous amino acids provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.  相似文献   

15.
U-Pb isotopic measurements on zircons from some granitic rocks of the Salinian block indicate emplacement and crystallization of these rocks about 104 m.y. ago (mid-Cretaceous). The relatively radiogenic nature of initial Sr and common Pb in these rocks, and the presence of an inherited component of zircon in some of them strongly suggest the involvement of continental crust in the genesis of the magmas. Possibly the magmas were generated in a zone of melting that overlapped the boundary between the mantle and the continental crust. U-Pb measurements on sphene, apatite, and feldspar from the plutons, along with previously published K-Ar and fission-track ages shed light on the post-emplacement thermal histories of the plutons. Most of the samples from the northern part of the Salinian block (Bodega Head, Point Reyes) show relatively simple thermal histories. Evidently these plutons were emplaced at moderate levels in the crust, crystallized, and cooled to moderate temperatures over an interval of about 10–15 m.y. Plutons from the central Salinian block (Santa Lucia Range) show more complex and prolonged thermal histories. These plutons evidently were emplaced at greater depths in the crust than were the plutons from the northern Salinian block. They remained at elevated temperatures for ca. 25 m.y., then cooled fairly rapidly, probably as a result of rapid uplift and erosion. One sample from the northern Salinian block shows an even longer span of time between emplacement and cooling. The thermal evolution of the Salinian plutonic rocks predates major offset along the San Andreas fault zone and thus reflects the thermal evolution of the undisrupted source terrane of the Salinian block. Isotopic measurements of the type reported here might therefore prove valuable in correlations across the San Andreas fault zone. Moreover, detailed study of thermal evolution within the Salinian block could shed light on major offsets within the block.  相似文献   

16.
Samples of a type 3.4 chondrite have been annealed at 400–1000°C for 1–200 hours, their thermoluminescence properties determined and analyzed for K, Na, Mn, Sc and Ca by instrumental neutron activation analysis. After annealing at ?900°C, the samples showed a 50% decrease in TL sensitivity, while after annealing at 1000°C it fell to 0.1-0.01 times its unannealed value and loss of Na and K occurred. The TL and compositional changes resemble those observed for the equilibrated Kernouve chondrite after similar annealing treatments, except that the sharp TL decrease, and element loss, occurred at ~ 1100°C; this difference is presumably due to petrographic differences in the feldspar of the two meteorites. The temperature and the width of the TL peak showed a discontinuous increase after annealing at 800°C; peak temperature jumped from 130 to 200°C and peak width increased from 90 to 150°C. The activation energies for these TL changes are 7–10 kcal/mole. Similar increases in the TL peak temperature have been reported in TL studies of Amelia, VA, albite, where they were associated with the low to high-temperature transformation. However, the activation energy for the transformation is ~80 kcal/mole. These changes in TL emission characteristics resemble trends observed in type 3 ordinary chondrites and it is suggested that type 3.3–3.5 chondrites have a low-feldspar as TL phosphor and > 3.5 have high-feldspar as the phosphor. Thermoluminescence therefore provides a means of palaeothermometry for type 3 ordinary chondrites.  相似文献   

17.
The concentrations of P, V, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the group IVB iron meteorites Cape of Good Hope, Hoba, Skookum, Santa Clara, Tawallah Valley, Tlacotepec, and Warburton Range have been measured by laser ablation inductively coupled plasma mass spectrometry. The data were fitted to a model of fractional crystallization of the IVB parent body core, from which the composition of the parent melt and metal/melt distribution coefficients for each element in the system were determined, for a chosen value of D(Ni). Relative to Ni and chondritic abundances, the parent melt was enriched in refractory siderophiles, with greatest enrichment of 5× chondritic in the most refractory elements, and was strongly volatile-depleted, down to 0.00014× chondritic in Ge. Comparison to an equilibrium condensation sequence from a gas of solar composition indicates that no single temperature satisfactorily explains the volatility trend in the IVB parent melt; a small (<1%) complement of ultrarefractory components added to metal that is volatile-depleted but otherwise has nearly chondritic abundances (for Fe, Co and Ni) best explains the volatility trend. In addition to this volatility processing, which probably occurred in a nebular setting, there was substantial oxidation of the metal in the IVB parent body, leading to loss of Fe and other moderately siderophile elements such as Cr, Ga, and W, and producing the high Ni contents that are observed in the IVB irons. By assuming that the entire IVB parent body underwent a similar chemical history as its core, the composition of the silicate that is complementary to the IVB parent melt was also estimated, and appears to be similar to that of the angrite parent.  相似文献   

18.
海南岛燕山晚期典型侵入岩成因矿物学研究及其地质意义   总被引:3,自引:0,他引:3  
分析了海南岛燕山晚期典型的屯昌岩体、千家岩体和保城岩体中的钾长石、斜长石、黑云母和角闪石的化学成分和成因特点。结果表明:(1)多数钾长石晶体的Or含量<90,具岩浆结晶成因特征。大部分斜长石属奥长石-中长石,An含量与岩石的SiO2成负相关关系,显示岩浆发生了较高程度的结晶分异作用。(2)黑云母为镁质黑云母,主要为岩浆结晶成因,部分为耐熔残余。角闪石均为钙质角闪石类,既有岩浆成因角闪石,也有次生交代成因角闪石,以相对贫铝、富镁、(Na+K)A低为显著特点。(3)岩体最终定位深度可能≤3.3km,温度≥750°C,具深源、高温、浅侵位特征。  相似文献   

19.
Chromite in ordinary chondrites (OC) can be used as a shock indicator. A survey of 76 equilibrated H, L and LL chondrites shows that unshocked chromite grains occur in equant, subhedral and rounded morphologies surrounded by silicate or intergrown with metallic Fe-Ni and/or troilite. Some unmelted chromite grains are fractured or crushed during whole-rock brecciation. Others are transected by opaque veins; the veins form when impacts cause localized heating of metal-troilite intergrowths above the Fe-FeS eutectic (988°C), mobilization of metal-troilite melts, and penetration of the melt into fractures in chromite grains. Chromite-plagioclase assemblages occur in nearly every shock-stage S3-S6 OC; the assemblages range in size from 20-300 μm and consist of 0.2-20-μm-size euhedral, subhedral, anhedral and rounded chromite grains surrounded by plagioclase or glass of plagioclase composition. Plagioclase has a low impedance to shock compression. Heat from shock-melted plagioclase caused adjacent chromite grains to melt; chromite grains crystallized from this melt. Those chromite grains in the assemblages that are completely surrounded by plagioclase are generally richer in Al2O3 than unmelted, matrix chromite grains in the same meteorite. Chromite veinlets (typically 0.5-2 μm thick and 10-300 μm long) occur typically in the vicinity of chromite-plagioclase assemblages. The veinlets formed from chromite-plagioclase melts that were injected into fractures in neighboring silicate grains; chromite crystallized in the fractures and the residual plagioclase-rich melt continued to flow, eventually pooling to form plagioclase-rich melt pockets. Chromite-rich “chondrules” (consisting mainly of olivine, plagioclase-normative mesostasis, and 5-15 vol.% chromite) occur in many shocked OC and OC regolith breccias but they are absent from primitive type-3 OC. They may have formed by impact melting chromite, plagioclase and adjacent mafic silicates during higher-energy shock events. The melt was jetted from the impact site and formed droplets due to surface tension. Crystallization of these droplets may have commenced in flight, prior to landing on the parent-body surface.Chromite-plagioclase assemblages and chromite veinlets occur in 25 out of 25 shock-stage S1 OC of petrologic type 5 and 6 that I examined. Although these rocks contain unstrained olivine with sharp optical extinction, most possess other shock indicators such as extensive silicate darkening, numerous occurrences of metallic Cu, polycrystalline troilite, and opaque veins. It seems likely that these rocks were shocked to levels at least as high as shock-stage S3 and then annealed by heat generated during the shock event. During annealing, the olivine crystal lattices healed but other shock indicators survived. Published Ar-Ar age data for some S1 OC indicate that many shock and annealing events occurred very early in the history of the parent asteroids. The common occurrence of shocked and annealed OC is consistent with collisions being a major mechanism responsible for metamorphosing OC.  相似文献   

20.
Metal and silicate portions from 13 mesosiderites, one pallasite, Bencubbin (“unique”) and Udei Station (‘iron with silicate inclusions’) have been analysed for their content of He, Ne and Ar; in most cases 36Cl could be determined as well. 36Cl-36Ar cosmic ray exposure ages fall between 10 and 160 Myr. Half of the metal samples show a deficit of spallogenic 3He (up to 30%) which we ascribe to a loss of tritium. The observed depletion of 3He in the silicates is correlated with their mineralogical composition: feldspar has lost its 3He in all cases, pyroxene definitely in one and possibly in five others, while olivine has been affected in only two meteorites. The thermal histories during their exposure to the cosmic radiation have been different for different meteoroids. Nevertheless, with the exception of Veramin, the data are compatible with the assumption of a continuous diffusion loss during a considerable fraction of the exposure era. For Veramin, however, an episodic event late in the exposure history is required. The exceptionally high 39Ar36Cl ratio in the metal, which is due to a high 39Ar activity, indicates that the event occurred during the last 500,000 years or so and resulted in an extremely excentric orbit (large aphelion).Production rates of 38,39Ar from Ca and 21,22Ne from Mg are given. The ratio P38CaP21Mg is close to unity. The ratios P38CaP38Fe vary between 20 and 50, and are not correlated with the absolute production rate of 38Ar from metal. The 22Ne21Ne production ratio from Mg is found to be close to but below unity.Of the mesosiderites only Veramin shows unambiguous evidence for primordial rare gases with larger amounts and a higher 20Ne36Ar ratio in the olivine, suggesting in situ fractionation to have at least been partly responsible for the abundance pattern found. Bencubbin contains large amounts of strongly fractionated primordial gases, but again part of the fractionation may have occurred in situ. Udei Station shows an excess of (3.5 ± 0.6) × 10?10 cm3 STP 129Xe/g in the non-magnetic portion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号