共查询到20条相似文献,搜索用时 15 毫秒
1.
John Longhi 《Geochimica et cosmochimica acta》2005,69(3):529-539
Graphical analysis of free-energy relationships involving binary quadruple points and their associated univariant equilibria in the system CO2-H2O suggests the presence of at least 2 previously unrecognized quadruple points and a degenerate binary invariant point involving an azeotrope between CO2-rich gas and liquid. Thermodynamic data extracted from the equilibrium involving clathrate (hydrate), gas, and ice (H = G+I) are employed along with published data to calculate the P-T range of the 3-ice equilibrium curve, S+I = H, where S is solid CO2. This equilibrium curve intersects the H = G+I curve approximately where the latter curve intersects the S+H = G curve, thus confirming the existence of one of the inferred quadruple points involving the phases S, G, H, and I. Recognition of some binary equilibria probably have been hampered by extremely low mutual solubilities of CO2 and H2O in the fluids phases which, for example, render the S+H = G virtually indistinguishable from the CO2-sublimation curve.To make the published portion of the L(liquid CO2)-G-H equilibrium “connect” with the other new quadruple point involving S, L, G, and H, it is necessary to change the sense of the equilibrium from L = G+H at higher pressures to L+H = G at lower pressures by positing a L = G azeotrope at very low concentrations of H2O. At the low-pressure origin of the azeotrope, which is only a few bars above the CO2-triple point, the azeotrope curve intersects the 3-phase curve tangentially, creating a degenerate invariant point at which the 3-phase equilibrium changes from L+H = G at lower pressures to L = G+H at higher pressures. The azeotrope curve is offset at slightly lower temperature from the L = G+H curve until the 3-phase equilibrium terminates at the quadruple point involving G, L, H, and W (water). With further increase in pressure the azeotrope curve tracks the L = G+W equilibrium and apparently terminates at a critical end point in close proximity to critical endpoints for the CO2-saturation curve and the L = G+W curve.Thermodynamic data for clathrate extracted from the slope of the H = G+I curve are consistent with a solid-state phase transformation in CO2-clathrate between 235 and 255 K. Published work shows that the type-I clathrate phase, whose atomic structure is a framework of water molecules with CO2 molecules situated in large “guest” sites within the framework, is variable in composition with ∼1 guest site vacancy per unit cell at the high-temperature limit of its stability; the number of water molecules, however, remains constant. The formula (CO2)8-y·46H2O, where y is the number of vacancies per unit cell, is in keeping with the atomic structure, whereas the traditional formula, CO2·nH2O, where n (hydration number) = 5.75, is misleading.Ambient P-T conditions in the Antarctic and Greenland ice sheets are compatible with sequestering large amounts of carbon as liquid CO2 and/or clathrate. 相似文献
2.
Calculations based on approximately 350 new measurements (CaT-PCO2) of the solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C indicate the following values for the log of the equilibrium constants KC, KA, and KV respectively, for the reaction CaCO3(s) = Ca2+ + CO2?3: where T is in oK. At 25°C the logarithms of the equilibrium constants are ?8.480 ± 0.020, ?8.336 ± 0.020 and ?7.913 ± 0.020 for calcite, aragonite and vaterite, respectively.The equilibrium constants are internally consistent with an aqueous model that includes the CaHCO+3 and CaCO03 ion pairs, revised analytical expressions for CO2-H2O equilibria, and extended Debye-Hückel individual ion activity coefficients. Using this aqueous model, the equilibrium constant of aragonite shows no PCO2-dependence if the CaHCO+3 association constant is between 0 and 90°C, corresponding to the value logKCahco+3 = 1.11 ± 0.07 at 25°C. The CaCO03 association constant was measured potentiometrically to be between 5 and 80°C, yielding logKCaCO03 = 3.22 ± 0.14 at 25°C.The CO2-H2O equilibria have been critically evaluated and new empirical expressions for the temperature dependence of KH, K1 and K2 are , and logK2 = ?107.8871 ? 0.03252849T + 5151.79/T + 38.92561 logT ? 563713.9/T2 which may be used to at least 250°C. These expressions hold for 1 atm. total pressure between 0 and 100°C and follow the vapor pressure curve of water at higher temperatures.Extensive measurements of the pH of Ca-HCO3 solutions at 25°C and 0.956 atm PCO2 using different compositions of the reference electrode filling solution show that measured differences in pH are closely approximated by differences in liquid-junction potential as calculated by the Henderson equation. Liquid-junction corrected pH measurements agree with the calculated pH within 0.003-0.011 pH.Earlier arguments suggesting that the CaHCO+3 ion pair should not be included in the CaCO3-CO2-H2O aqueous model were based on less accurate calcite solubility data. The CaHCO+3 ion pair must be included in the aqueous model to account for the observed PCO2-dependence of aragonite solubility between 317 ppm CO2 and 100% CO2.Previous literature on the solubility of CaCO3 polymorphs have been critically evaluated using the aqueous model and the results are compared. 相似文献
3.
The European Hercynides are considered the collisional result of Baltica and the microcontinents of Southern Europe, after subduction destroyed the intervening Rheic Ocean during the early Paleozoic. Their geotectonic development is assumed to consist of four overlapping stages:
- 1. (1) lithospheric thinning, upwelling of hot asthenospheric material, subsidence along listric faults, and basinal and geosynclinal development on the opposing shelves of the Rheic Ocean starting in pre-Devonian time;
- 2. (2) intermittent subduction of the Rheic Ocean interspersed with episodes of fracturing, volcanism, local uplift and subsidence, and basement reactivation as a result of compression with dextral megashear, particularly since the earliest Devonian;
- 3. (3) several phases of folding with a northward vergence, and thrusting and overthrusting along listric surfaces, the true orogenic stage;
- 4. (4) post-orogenic stage of massive granite intrusions and subsequent volcanism in the Permo-Triassic
4.
James R. Wood 《Geochimica et cosmochimica acta》1975,39(8):1147-1163
A thermodynamic model for concentrated brines has been developed which is capable of predicting the solubilities of many of the common evaporite minerals in chloro-sulfate brines at 25°C and 1 atm. The model assumes that the behaviour of the mean stoichiometric ionic activity coefficient in mixtures of aqueous electrolytes can be described by the Scatchard deviation function and Harned's Rule. In solutions consisting of one salt and H2O, the activity coefficient is described by the expression where and B? salt specific parameters obtained from data regression. In a mixture of n electrolytes and H2O, B? for the ith component is given by where αij is a (constant) mixing parameter characterizing the interaction of the i and j components and yj is the ionic strength fraction of the jth component. The activity of H2O is obtained from a Gibbs-Duhem integration and does not require any additional parameters or assumptions. In this study, parameters have been obtained for the systems NaCl-KCl-MgCl2-CaCl2-H2O and NaCl-MgSO4-H2O at 25°C and 1 atm. Computed solubility curves and solution compositions predicted for invariant points in these systems agree well with the experimental data. The model is flexible and easily extended to other systems and to higher temperatures. 相似文献
5.
The solubility of hematite in chloride-bearing hydrothermal fluids was determined in the temperature range 400–600°C and at 1000 and 2000 bars using double-capsule, rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Popp, 1979). The changes in the molalities of associated hydrogen chloride () as a function of the molality of total iron in the fluid at constant temperature and pressure were used to identify the predominant species of iron in the hydrothermal fluid. The molality of associated HCl varied from 0.01 to 0.15. Associated FeCl20 was found to be the most abundant species in equilibrium with hematite. Determination of Cl/Fe in the fluid in equilibrium with hematite yields values approximately equal to 2.0 suggesting that ferrous iron is the dominant oxidation state.The equilibrium constant for the reaction Fe2O3 + 4HCl0 + H2 = 2FeCl20 + 3H2O was calculated and used to estimate the difference in Gibbs free energy between FeCl20 and HCl0 in the temperature range 400–600°C at 1000 and 2000 bars pressure. 相似文献
6.
Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO2 and H2O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in the original formulation, activity coefficients for aqueous CO2 derived from several literature sources, primarily for NaCl solutions. Best results are obtained when combining the solubility correlations of Spycher et al. (2003) with the activity coefficient formulation of Rumpf et al. (1994) and Duan and Sun (2003), which can be extended to chloride solutions other than NaCl. This approach allows computing mutual solubilities in a noniterative manner with an accuracy typically within experimental uncertainty for solutions up to 6 molal NaCl and 4 molal CaCl2. 相似文献
7.
Michael Steiger Kirsten Linnow Dorothee Ehrhardt Mandy Rohde 《Geochimica et cosmochimica acta》2011,75(12):3600-3626
We report new measurements of equilibrium relative humidities for stable and metastable hydration-dehydration equilibria involving several magnesium sulfates in the MgSO4·nH2O series. We also report a comprehensive thermodynamic treatment of the system including solution properties and experimental data from the published literature, i.e. solubilities, heat capacities and additional decomposition humidities. While for some magnesium sulfate hydrates solubility data in the binary system MgSO4-H2O are sparse, there is a reasonable database of solubility measurements of these hydrates in the ternary MgCl2-MgSO4-H2O and the quaternary reciprocal Na+-Mg2+-Cl−-SO42−-H2O systems. To make these data suitable for the determination of solubility products, we parameterized a Pitzer ion interaction model for the calculation of activity coefficients and water activities in mixed solutions of these systems and report the ion interaction parameters for the Na+-Mg2+-Cl−-SO42−-H2O system. The model predicted solubilities in the reciprocal system are in very good agreement with experimental data. Using all available experimental data and the solution model an updated phase diagram of the MgSO4-H2O system covering the whole temperature range from about 170 to 473 K is established. This treatment includes MgSO4·H2O (kieserite), MgSO4·4H2O (starkeyite), MgSO4·5H2O (pentahydrite), MgSO4·6H2O (hexahydrite), MgSO4·7H2O (epsomite) and MgSO4·11H2O (meridianiite). It is shown that only kieserite, hexahydrite, epsomite and meridianiite show fields of stable existence while starkeyite and pentahydrite are always metastable. Due to sluggish kinetics of kieserite formation, however, there is a rather extended field of metastable existence of starkeyite which makes this solid a major product in dehydration reactions. The model predicted behavior of the magnesium sulfates is in excellent agreement with observations reported in the literature under terrestrial temperature and relative humidity conditions. We also discuss the implications of the new phase diagram for sulfates on Mars. 相似文献
8.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct. 相似文献
9.
Evaluating the feasibility of CO2 geologic sequestration requires the use of pressure-temperature-composition (P-T-X) data for mixtures of CO2 and H2O at moderate pressures and temperatures (typically below 500 bar and below 100°C). For this purpose, published experimental P-T-X data in this temperature and pressure range are reviewed. These data cover the two-phase region where a CO2-rich phase (generally gas) and an H2O-rich liquid coexist and are reported as the mutual solubilities of H2O and CO2 in the two coexisting phases. For the most part, mutual solubilities reported from various sources are in good agreement. In this paper, a noniterative procedure is presented to calculate the composition of the compressed CO2 and liquid H2O phases at equilibrium, based on equating chemical potentials and using the Redlich-Kwong equation of state to express departure from ideal behavior. The procedure is an extension of that used by King et al. (1992), covering a broader range of temperatures and experimental data than those authors, and is readily expandable to a nonideal liquid phase. The calculation method and formulation are kept as simple as possible to avoid degrading the performance of numerical models of water-CO2 flows for which they are intended. The method is implemented in a computer routine, and inverse modeling is used to determine, simultaneously, (1) new Redlich-Kwong parameters for the CO2-H2O mixture, and (2) aqueous solubility constants for gaseous and liquid CO2 as a function of temperature. In doing so, mutual solubilities of H2O from 15 to 100°C and CO2 from 12 to 110°C and up to 600 bar are generally reproduced within a few percent of experimental values. Fugacity coefficients of pure CO2 are reproduced mostly within one percent of published reference data. 相似文献
10.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with , , and . However, these values vary at room temperature with the pressure-temperature conditions of synthesis by , , and , probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca. 相似文献
11.
This work reports the application of thermodynamic models, including equations of state, to binary (salt-free) CH4-H2O fluid inclusions. A general method is presented to calculate the compositions of CH4-H2O inclusions using the phase volume fractions and dissolution temperatures of CH4 hydrate. To calculate the homogenization pressures and isolines of the CH4-H2O inclusions, an improved activity-fugacity model is developed to predict the vapor-liquid phase equilibrium. The phase equilibrium model can predict methane solubility in the liquid phase and water content in the vapor phase from 273 to 623 K and from 1 to 1000 bar (up to 2000 bar for the liquid phase), within or close to experimental uncertainties. Compared to reliable experimental phase equilibrium data, the average deviation of the water content in the vapor phase and methane solubility in the liquid phase is 4.29% and 3.63%, respectively. In the near-critical region, the predicted composition deviations increase to over 10%. The vapor-liquid phase equilibrium model together with the updated volumetric model of homogenous (single-phase) CH4-H2O fluid mixtures (Mao S., Duan Z., Hu J. and Zhang D. (2010) A model for single-phase PVTx properties of CO2-CH4-C2H6-N2-H2O-NaCl fluid mixtures from 273 to 1273 K and from 1 to 5000 bar. Chem. Geol.275, 148-160), is applied to calculate the isolines, homogenization pressures, homogenization volumes, and isochores at specified homogenization temperatures and compositions. Online calculation is on the website: http://www.geochem-model.org/. 相似文献
12.
Dissolution rates of limestone covered by a water film open to a CO2-containing atmosphere are controlled by the chemical composition of the CaCO3-H2O-CO2 solution at the water-mineral interface. This composition is determined by the Ca2+-concentration at this boundary, conversion of CO2 into H+ and in the solution, and by diffusional mass transport of the dissolved species from and towards the water-limestone interface. A system of coupled diffusion-reaction equations for Ca2+, , and CO2 is derived. The Ca2+ flux rates at the surface of the mineral are defined by the PWP-empirical rate law. These flux rates by the rules of stoichiometry must be equal to the flux rates of CO2 across the air-water interface. In the solution, CO2 is converted into H+ and . At low water-film thickness this reaction becomes rate limiting. The time dependent diffusion-reaction equations are solved for free drift dissolution by a finite-difference scheme, to obtain the dissolution rate of calcite as a function of the average calcium concentration in the water film. Dissolution rates are obtained for high undersaturation. The results reveal two regimes of linear dissolution kinetics, which can be described by a rate law F = αi(miceq − c), where c is the calcium concentration in the water film, ceq the equilibrium concentration with respect to calcite. For index i = 0, a fast rate law, which here is reported for the first time, is found with α0 = 3 × 10−6 m s−1 and m0 = 0.3. For c > m0ceq, a slow rate law is valid with α1 = 3 × 10−7 m s−1 and m1 = 1, which confirms earlier work. The numbers given above are valid for film thickness of several tenths of a millimetre and at 20 °C. These rates are proven experimentally, using a flat inclined limestone plate covered by a laminar flowing water film injected at an input point with known flow rate Q and calcium concentration. From the concentration measured after flow distance x the dissolution rates are determined. These experiments have been performed at a carbon-dioxide pressure of 0.00035 atm and also of 0.01 atm. The results are in good agreement to the theoretical predictions. 相似文献
13.
Nicholas J. Tosca Alexander Smirnov Scott M. McLennan 《Geochimica et cosmochimica acta》2007,71(11):2680-2698
Recent isopiestic studies of the Fe2(SO4)3-H2SO4-H2O system at 298.15 K are represented with an extended version of Pitzer’s ion interaction model. The model represents osmotic coefficients for aqueous {(1 − y)Fe2(SO4)3 + yH2SO4} mixtures from 0.45 to 3.0 m at 298.15 K and 0.0435 ? y ? 0.9370. In addition, a slightly less accurate representation of a more extended molality range to 5.47 m extends over the same y values, translating to a maximum ionic strength of 45 m. Recent isopiestic data for the system at 323.15 K are represented with the extended Pitzer model over a limited range in molality and solute fraction. These datasets are also represented with the usual “3-parameter” version of Pitzer’s model so that it may be incorporated in geochemical modeling software, but is a slightly less accurate representation of thermodynamic properties for this system. Comparisons made between our ion interaction model and available solubility data display partial agreement for rhomboclase and significant discrepancy for ferricopiapite. The comparisons highlight uncertainty remaining for solubility predictions in this system as well as the need for additional solubility measurements for Fe3+-bearing sulfate minerals. The resulting Pitzer ion interaction models provide an important step toward an accurate and comprehensive representation of thermodynamic properties in this geochemically important system. 相似文献
14.
Richard D. Warner 《Geochimica et cosmochimica acta》1975,39(10):1413-1421
Subsolidus and vapor-saturated liquidus phase relations for a portion of the system CaO-MgO-SiO2-H2O, as inferred from experimental data for the composition regions CaMgSi2O6-Mg2SiO4-SiO2-H2O and CaMgSi2O6-Mg2SiO4-Ca3MgSi2O8 (merwinite)-H2O, are presented in pressure-temperature projection. Sixteen invariant points and 39 univariant reactions are defined on the basis of the 1 atm and 10 kbar (vapor-saturated) liquidus diagrams. Lack of experimental control over many of the reactions makes the depicted relations schematic in part.An invariant point involving orthoenstatite, protoenstatite, pigeonite, and diopside (all solid solutions) occurs at low pressure (probably between 1 and 2 kbar). At pressures below this invariant point, orthoenstatite breaks down at high temperature to the assemblage diopside + protoenstatite; with increasing temperature, the latter assemblage reacts to form pigeonite. At pressures above the invariant point, pigeonite forms according to the reaction diopside + orthoenstatite = pigeonite, and the assemblage diopside + protoenstatite is not stable. At 1 atm, both pigeonite and protoenstatite occur as primary liquidus phases, but at pressures above 6–7 kbar orthoenstatite is the only Ca-poor pyroxene polymorph which appears on the vapor-saturated liquidus surface.At pressures above approximately 10.8 kbar, only diopside, forsterite, and merwinite occur as primary liquidus phases in the system CaMgSi2O6-Mg2SiO4-Ca3MgSi2O8-H2O, in the presence of an aqueous vapor phase. At pressures between 1 atm and 10.2 kbar, both akermanite and monticellite also occur as primary liquidus phases. Comparison of the 1 atm and 10 kbar vapor-saturated liquidus diagrams suggests that melilite basalt bears a low pressure, or shallow depth, relationship to monticellite-bearing ultrabasites. 相似文献
15.
Walter Riesen Heinz Gamsjäger Paul W. Schindler 《Geochimica et cosmochimica acta》1977,41(9):1193-1200
The carbonato and hydrogencarbonato complexes of Mg2+ were investigated at 25 and 50° in solutions of the constant ClO4? molality (3 M) consisting preponderantly of NaClO4. The experimental data could be explained assuming the following equilibria: Mg2+ + CO2B + H2O ag MgHCO+3 + H+, , Mg2+ + 2 CO2g + 2 H2Oag Mg(HCO3)02 ± 2 H+, , ?15.37 ± 0.39 (50°), Mg2+ + CO2g + H2Oag MgCO03 + 2 H+, ,?15.23 ± 0.02 (50°), with the assumption γMgCO30 = γMg(HCO3)02, ΔG0(I = 0) for the reaction MgCO03 + CO2g + H2O = Mg(HCO3)02 was estimated to be ?3.91 ± 0.86 and 0.6 ± 2.4 kJ/mol at 25 and 50°C, respectively. The abundance of carbonate linked Mg(II) species in fresh water systems is discussed. 相似文献
16.
Harald Behrens Susanne Ohlhorst Michel Champenois 《Geochimica et cosmochimica acta》2004,68(22):4687-4703
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts. 相似文献
17.
CO2-water-basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts
The interaction between CO2-rich waters and basaltic glass was studied using reaction path modeling in order to get insight into the water-rock reaction process including secondary mineral composition, water chemistry and mass transfer as a function of CO2 concentration and reaction progress (ξ). The calculations were carried out at 25-90 °C and pCO2 to 30 bars and the results were compared to recent experimental observations and natural systems. A thermodynamic dataset was compiled from 25 to 300 °C in order to simulate mineral saturations relevant to basalt alteration in CO2-rich environment including revised key aqueous species for mineral dissolution reactions and apparent Gibbs energies for clay and carbonate solid solutions observed to form in nature. The dissolution of basaltic glass in CO2-rich waters was found to be incongruent with the overall water composition and secondary mineral formation depending on reaction progress and pH. Under mildly acid conditions in CO2 enriched waters (pH <6.5), SiO2 and simple Al-Si minerals, Ca-Mg-Fe smectites and Ca-Mg-Fe carbonates predominated. Iron, Al and Si were immobile whereas the Mg and Ca mobility depended on the mass of carbonate formed and water pH. Upon quantitative CO2 mineralization, the pH increased to >8 resulting in Ca-Mg-Fe smectite, zeolites and calcite formation, reducing the mobility of most dissolved elements. The dominant factor determining the reaction path of basalt alteration and the associated element mobility was the pH of the water. In turn, the pH value was determined by the concentration of CO2 and extent of reaction. The composition of the carbonates depended on the mobility of Ca, Mg and Fe. At pH <6.5, Fe was in the ferrous oxidation state resulting in the formation of Fe-rich carbonates with the incorporation of Ca and Mg. At pH >8, the mobility of Fe and Mg was limited due to the formation of clays whereas Ca was incorporated into calcite, zeolites and clays. Competing reactions between clays (Ca-Fe smectites) and carbonates at low pH, and zeolites and clays (Mg-Fe smectites) and carbonates at high pH, controlled the availability of Ca, Mg and Fe, playing a key role for low temperature CO2 mineralization and sequestration into basalts. Several problems of the present model point to the need of improvement in future work. The determinant factors linking time to low temperature reaction path modeling may not only be controlled by the primary dissolving phase, which presents challenges concerning non-stoichiometric dissolution, the leached layer model and reactive surface area, but may include secondary mineral precipitation kinetics as rate limiting step for specific reactions such as retrieved from the present reaction path study. 相似文献
18.
Speciation of aqueous magnesium in the system MgO-SiO2-H2O-HCl in supercritical aqueous fluids has been investigated using standard rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Eugster, 1973. Am. J. Sci.267, 268–286). A concentric double-capsule charge was utilized. The outer gold capsule contained the assemblage talc + quartz + Ag + AgCl + H2O-MgCl2 fluid; the inner platinum capsule, Ag + AgCl + H2O-HCl fluid. During the experiments, and thus equilibrated between the two capsules. After quenching, measurement of the chloride concentration in the fluid in the inner capsule and total magnesium in the fluid in the outer capsule defines the concentrations of HCl and Mg that coexist with talc + quartz in the outer capsule. Changes in the measured molality of HCl as a function of the total magnesium concentration at constant P and T were used to identify the predominant species of magnesium in the hydrothermal fluid. Experimental results showed that at 2000 bar, MgCl°2 is the predominant species above 550°C and Mg2+, below 400°C. Data at intermediate temperatures when combined with the dissociation constant for HCl were used to obtain the dissociation constant for MgCl°2. The results of these experiments were combined with results from experiments using Ag + AgCl in conjunction with the oxygen buffer, hematite-magnetite, to obtain the equilibrium constant for the reaction from which the difference in Gibbs free energy of MgCl°2 and HC1° was obtained as a function of temperature at 1000, 1500 and 2000 bar pressure, Solubility constants for brucite. forsterite, chrysotile, and talc were calculated. 相似文献
19.
Dionysis I. Foustoukos Jennifer L. Houghton Stefan M. Sievert 《Geochimica et cosmochimica acta》2011,75(6):1594-1607
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments. 相似文献
20.
Ch. GarnierG. Finqueneisel T. ZimnyZ. Pokryszka S. LafortuneP.D.C. Défossez E.C. Gaucher 《International Journal of Coal Geology》2011,87(2):80-86
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams. 相似文献