首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.  相似文献   

2.
Permian Khuff reservoirs along the east coast of Saudi Arabia and in the Arabian Gulf produce dry sour gas with highly variable nitrogen concentrations. Rough correlations between N2/CH4, CO2/CH4 and H2S/CH4 suggest that non-hydrocarbon gas abundances are controlled by thermochemical sulfate reduction (TSR). In Khuff gases judged to be unaltered by TSR, methane δ13C generally falls between −40‰ and −35‰ VPDB and carbon dioxide δ13C between −3‰ and 0‰ VPDB. As H2S/CH4 increases, methane δ13C increases to as much as −3‰ and carbon dioxide δ13C decreases to as little as −28‰. These changes are interpreted to reflect the oxidation of methane to carbon dioxide.Khuff reservoir temperatures, which locally exceed 150 °C, appear high enough to drive the reduction of sulfate by methane. Anhydrite is abundant in the Khuff and fine grained nodules are commonly rimmed with secondary calcite cement. Some cores contain abundant pyrite, sphalerite and galena. Assuming that nitrogen is inert, loss of methane by TSR should increase N2/CH4 of the residual gas and leave δ15N unaltered. δ15N of Paleozoic gases in Saudi Arabia varies from −7‰ to 1‰ vs. air and supports the TSR hypothesis. N2/CH4 in gases from stacked Khuff reservoirs varies by a factor of 19 yet the variation in δ15N (0.3–0.5‰) is trivial.Because the relative abundance of hydrogen sulfide is not a fully reliable extent of reaction parameter, we have attempted to assess the extent of TSR using plots of methane δ13C versus log(N2/CH4). Observed variations in these parameters can be fitted using simple Rayleigh models with kinetic carbon isotope fractionation factors between 0.98 and 0.99. We calculate that TSR may have destroyed more than 90% of the original methane charge in the most extreme instance. The possibility that methane may be completely destroyed by TSR has important implications for deep gas exploration and the origin of gases rich in nitrogen as well as hydrogen sulfide.  相似文献   

3.
松辽盆地庆深气田异常氢同位素组成成因研究   总被引:2,自引:0,他引:2  
对松辽盆地徐家围子断陷庆深气田天然气组分、碳氢同位素和稀有气体同位素的分析表明,天然气以烷烃气为主,烷烃气碳同位素组成随着碳数增加呈变轻趋势,且δ13C1>-30‰, R/Ra一般大于1.0,δ13CCO2值介于-16.5‰~-5.1‰之间;氢同位素组成δD1=-205‰~-197‰,平均值为-203‰,δD2=-247‰~-160‰,平均值为-195‰,δD3=-237‰~-126‰,平均值为-163‰,且存在氢同位素组成倒转现象,即δD1>δD2<δD3。根据对庆深气田天然气不同地球化学特征分析,认为该气田烷烃气中重烃主要为有机成因,而 CH4有相当无机成因混入。庆深气田烷烃气氢同位素组成具有 CH4变化小,而重烃(δD2,δD3)变化大的特点。根据与朝阳沟地区天然气烷烃气氢同位素组成对比分析,认为 CH4主要表现为无机成因,而重烃气(δD2,δD3)主要为有机成因,且无机成因CH4氢同位素组成重于有机成因CH4。  相似文献   

4.
Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ13C of organic carbon was ~ ?12%., whereas at 900 ppm total inorganic C, the δ13C of similar species was ~ ?25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ13C values were ~ ?18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ13C values (to ?30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ13C of the original organic matter.The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to ?74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of the Precambrian can be inferred.  相似文献   

5.
According to the adsorption-desorption characteristics of coalbed gas and analysis of various experimental data, this paper proposes that the generation of secondary biogenic gas (SBG) and its mixing of with the residual thermogenic gas at an early stage inevitably lead to secondary changes of the thermogenic gas and various geochemical additive effects. Experimental results also show that the fractionation of the carbon isotope of methane of coal core desorption gas changes very little; the δ13C1 value of the mixed gas of biogenic and thermogenic gases is between the δ13C1 values of the two “original” gases, and the value is determined by the carbon isotopic compositions and mixing proportions of the two “original” methanes. Therefore this paper proposes that the study on the secondary changes of the thermogenic gas and various additive effects is a new effective way to study and identify SBG. Herein, a systematic example of research on the coalbed gas (Huainan coalbed gas) is further conducted, revealing a series of secondary changes and additive effects, the main characteristics and markers of which are: (1) the contents of CO2 and heavy-hydrocarbons decrease significantly; (2) the content of CH4 increases and the gas becomes drier; (3) the δ13C and δD values of methane decrease significantly and tend to have biogenetic characteristics; and (4) the values of δ13C2 and δ13CCO2 grow higher. These isotopic values also change with the degradation degrees by microbes and mixing proportions of the two kinds of gases in different locations. There exists a negative correlation between the δ13C1 vs δ13CCO2 values. The △δ13CC2–C1 values obviously become higher. The distributions of the △δ13CCO2–C1 values are within certain limits and show regularity. There exist a positive correlation between the N2 versus Ar contents, and a negative correlation between the N2 versus CH4 contents, indicating the down forward infiltration of the surface water containing air. These are important markers of the generation and existence of SBG.  相似文献   

6.
蜀南纳溪-合地区嘉陵江组天然气地球化学特征及其气源   总被引:1,自引:0,他引:1  
通过分析纳溪—合江地区嘉陵江组天然气组分,碳、氢同位素组成以及该区烃源岩发育特征,认为嘉陵江组天然气为混源气,主要为下二叠统栖霞组—茅口组碳酸盐岩烃源岩生成的油型干气,混有下二叠统梁山组和上二叠统龙潭组生成的煤成气,下志留统龙马溪组泥质源岩可能也有贡献.研究区嘉陵江组烷烃气的氢同位素组成较重.纳溪气田烷烃气具有正常的碳...  相似文献   

7.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

8.
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated.Compared with the carbon isotopic composition of the source methane (δ13C1 = −39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff −δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed.The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous “semi-infinite” shale caprock over a period of 10 Ma.In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas.The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.  相似文献   

9.
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ 13C1 and δ13C2 values ranging mainly from ?35‰ to ?30‰ and ?27‰ to ?22‰, respectively, high δ13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.  相似文献   

10.
Carbon and hydrogen isotopic compositions of New Zealand geothermal gases   总被引:1,自引:0,他引:1  
Carbon and hydrogen isotopic compositions are reported for methane, hydrogen and carbon dioxide from four New Zealand geothermal areas: Ngawha, Wairakei, Broadlands and Tikitere. Carbon-13 contents are between ?24.4 and ?29.5%. (PDB) for methane, and between ?3.2 and ?9.1%. for carbon dioxide. Deuterium contents are between ?142 and ?197%. (SMOW) for methane and between ?310 and ?600%. for hydrogen. The different areas have different isotopic compositions with some general relationships to reservoir temperature.The isotopic exchange of hydrogen with water indicates acceptable reservoir temperatures of 180–260°C from most spring samples but often higher than measured temperatures in well samples. Indicated temperatures assuming 13C equilibria between CH4 and CO2 are 100–200°C higher than measured maxima. This difference may be due to partial isotopic equilibration or may reflect the origin of the methane. Present evidence cannot identify whether the methane is primordial, or from decomposing sediments or from reduction of magmatic CO2. The isotopic equilibria between CH4, CO2, H2 and H2O are reviewed and a new semi-empirical temperature scale proposed for deuterium exchange between methane and water.  相似文献   

11.
煤层气的成因研究可以为煤层气勘探与开发提供科学依据,然而,煤层气的氢碳同位素组成受多种因素的影响,以前较多的研究是成气母质性质和成熟度对煤层气氢碳同位素的影响,对于成煤物质形成的气候环境对热解煤层气同位素的影响尚不清楚.热解模拟了高纬度寒冷干旱和低纬度热带湿润环境的草本泥炭,对热解烃类气体的氢碳同位素组成及其差异性进行了研究.研究结果表明:与低纬度热带湿润环境中形成的草本泥炭相比较,高纬度寒冷干旱环境的草本泥炭热解甲烷、乙烷和丙烷具有轻的氢同位素组成和重的碳同位素组成,并且从泥炭连续热解至Ro分别为2.5%、3.5%和5.5%时,甲烷、乙烷和丙烷δD值分别平均降低-17‰~-10‰、-32‰~-28‰和-25‰~-17‰,甲烷和乙烷δ13C值分别平均升高2.9‰~3.6‰和0.9‰~1.1‰.认为这种同位素差异起因于气候环境对形成泥炭的植物氢碳同位素组成的影响.建立了高纬度寒冷干旱和低纬度热带湿润环境中形成的成煤有机质热解烃类气体氢碳同位素组成与Ro之间的关系式,同时也建立了烃类气体的碳和氢同位素之间的关系式.这些研究成果为不同气候环境下形成的成煤有机质生成的煤层气成因研究提供了科学依据.   相似文献   

12.
The Patom Complex is characterized by a unique association of carbonate rocks with ultralow (≤8‰) and ultrahigh (>6‰) δ13C values. The thickness, stable isotopic composition along the strike, and lithological and geochemical parameters suggest that these rocks could not form as a result of short-term local events or epigenetic processes. Ultralow δ13C values (less than ?8‰) in carbonate rocks of the Zhuya Group, which substantially exceed all the known negative C isotope anomalies in thickness (up to 1000 m) and amplitude (δ13C = ?10 ± 2‰), point to sedimentation under conditions of extreme “contamination” of water column by oxidized isotopically light organic (hereafter, light) carbon. The decisive role in this contamination belonged to melting and oxidation of huge volumes of methane hydrates accumulated in sediments during the powerful and prolonged Early Vendian glacial epoch. The accumulation of δ13C-depleted carbonates was preceded by the deposition of carbonates with anomalously high δ13C values. These carbonates formed at high rates of the burial of organic matter and methane in sediments during periods when the sedimentation basin consumed carbon dioxide from the atmosphere and organic carbon was conserved in sediments.  相似文献   

13.
The δ13C value of methane in sediments from a tidal freshwater site in the White Oak River Estuary, North Carolina, exhibited a relatively small, but consistent, seasonal variation (∼3‰) with isotopically heavier values occurring during the warmer months (−66.1‰ summer, −69.2‰ winter). These isotopic shifts could have resulted from changes in: (1) isotopic compositions of precursor molecules; (2) kinetic isotope effects associated with methane production; or (3) pathways of methane production. Methane production rate and isotopic data from sediment incubation experiments and field measurements were used to determine the relative contributions of these factors to the observed seasonal variations. Although changes in δ13C values of biogenic methane are typically thought to result from changes in pathways of methane production, this study showed that a significant amount (36 ± 22%) of the seasonal variations between the δ13C value of methane produced in sediment incubation experiments could be attributed to changes in the δ13C value of the ΣCO2 pool. This was due to increased methane production rates and removal of 12CO2 with increasing temperature, a prevalent feature of methanogenic systems that may account for some of the frequently observed 13C enrichment in methane during warmer months. Combining the change in the δ13C value of the ΣCO2 pool with temperature-controlled changes in fractionation (α) resulting from kinetic isotope effects accounted for (53 ± 22%) of the 13C enrichment observed during summer sediment incubation experiments. Although large pathway changes were not observed in sediment incubation experiments, the remaining differences in δ13C values could have resulted from smaller, undetectable changes in the percentage of methane production from acetate (∼14%) and/or a shift in the δ13C values of methane produced from acetate (∼4‰).  相似文献   

14.
The idea that natural gas is the thermal product of organic decomposition has persisted for over half a century. Crude oil is thought to be an important source of gas, cracking to wet gas above 150°C, and dry gas above 200°C. But there is little evidence to support this view. For example, crude oil is proving to be more stable than previously thought and projected to remain intact over geologic time at typical reservoir temperatures. Moreover, when oil does crack, the products do not resemble natural gas. Oil to gas could be catalytic, however, promoted by the transition metals in carbonaceous sediments. This would explain the low temperatures at which natural gas forms, and the high amounts of methane. This idea gained support recently when the natural progression of oil to dry gas was duplicated in the laboratory catalytically. We report here the isotopic composition of catalytic gas generated from crude oil and pure hydrocarbons between 150 and 200°C. δ13C for C1 through C5 was linear with 1/n (n = carbon number) in accordance with theory and typically seen in natural gases. Over extended reaction, isobutane and isopentane remained lighter than their respective normal isomers and the isotopic differentials were constant as all isomers became heavier over time. Catalytic methane, initially −51.87‰ (oil = −22.5‰), progressed to a final composition of −26.94‰, similar to the maturity trend seen in natural gases: −50‰ to −20‰. Catalytic gas is thus identical to natural gas in molecular and isotopic composition adding further support to the view that catalysis by transition metals may be a significant source of natural gas.  相似文献   

15.
对淮北煤田祁东煤矿6个煤层的24个煤样和12个气样的稳定有机碳同位素分析,分别研究了煤和瓦斯中碳同位素的分布特征和变化趋势,为不同煤层及瓦斯源分析提供理论依据。研究表明:祁东煤矿煤的δ13C为-25.11‰~-22.76‰,6-1煤层至9煤层碳同位素均值呈波动变化,可能受当时成煤时期沉积环境的影响;瓦斯的δ13C1为-63.65‰~-52.51‰,表现出次生生物成因气的变化特征,二氧化碳碳同位素特征(-22.61‰~-17.96‰)表明其均是煤热解而来。   相似文献   

16.
Changes in the concentrations of atmospheric greenhouse gases are an important part of the global climate forcing. The hypothesis that benthic foraminifera are useful proxies of local methane emission from the seafloor has been verified on sediment cores by numerous studies. The calcium carbonate (CaCO3) content and the high-resolution carbon and oxygen isotope composition of the benthic foraminifera from the core 08CF7, from the northeastern Shenhu gas hydrate drilling area in the Baiyun Sag of the northern South China Sea were analyzed, and the benthic foraminifera’s evidence for methane release from gas hydrate decomposition are presented here for the first time. Two rapid obvious carbon isotope negative excursions were observed in the oxygen isotope stage boundaries 5d/5c and 6/5e (penultimate deglaciation, about 130 ka) of the cold-to-warm climatic transition period. The largest negative value of δ13C is about ?2.95 ‰, and the whole change of carbon and oxygen isotope is strikingly similar and is in consonance with the atmospheric methane concentration recorded by the Vostok ice core and the carbon isotopic record from Lake Baikal. Combining these results with the analysis of the geological conditions of the study area and the fact that gas hydrate exists in the surrounding area, it can be concluded that the carbon isotope negative excursions of the benthic foraminifera in the northern South China Sea are associated with methane release from gas hydrate decomposition due to deglacial climate warming. By recording the episodes of massive gas hydrate decomposition closely linked with the northern hemisphere temperatures during major warming periods, the new δ13C record from the Baiyun Sag provides further evidence for the potential impact of gas hydrate reservoir on rapid deglacial rises of atmospheric methane levels.  相似文献   

17.
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas O...  相似文献   

18.
Low molecular weight monocarboxylic acids are the most abundant water soluble organic compounds in the Murchison and many other CM type carbonaceous chondrites. In this study, we examined the monocarboxylic acids in Murchison and EET96029.20 carbonaceous meteorites using a new sample preparation and introduction technique for gas chromatograph recently developed for volatile, water-soluble organic compounds: solid phase micro-extraction (SPME). We identified more than 50 monocarboxylic acids from Murchison compared with the 18 compounds reported previously. Formic acid, a known interstellar molecule, has been fully analyzed in these carbonaceous meteorites, with its δD value suggesting an interstellar origin. We determined both carbon and hydrogen isotopic ratios of individual monocarboxylic acids in Murchison, to better define the origins and genetic relationships of these compounds. The compound-specific isotopic data reveal a large enrichment in 13C (δ13C up to + 32.5) and particularly D (δD up to + 2024). The branched acids are substantially enriched in both 13C and D relative to the straight chain acids, with those branched acids containing a quaternary carbon showing the greatest isotopic enrichment. The isotopic difference may be attributed to variations in the different synthetic regimes or terrestrial input of straight chain acids.  相似文献   

19.
Early concretionary and non-concretionary siderites are common in subsurface Triassic sandstones and mudrocks of the Rewan Group, southern Bowen Basin. A detailed petrological and stable isotopic study was carried out on these siderites in order to provide information on the depositional environment of the host rocks. The siderites are extremely pure, containing 85–97 mol% FeCO3, and are commonly enriched in manganese. δ13C (PDB) values are highly variable, ranging from - 18·4 to +2·9‰, whereas δ18O (PDB) values are very consistent, ranging from - 14·0 to - 10·2‰ (mean= - 11·9 ± 1·0‰). The elemental and oxygen isotopic composition of the siderites indicates that only meteoric porewaters were involved in siderite formation, implying that host rocks accumulated in totally non-marine environments. The carbon isotopic composition of the siderites is interpreted to reflect mixing of bicarbonate/carbon dioxide generated by methane oxidation and methanogenesis. Very low δ13C values demonstrate that, contrary to current views, highly 13C-depleted siderite can be produced at shallow burial depths in anoxic non-marine sediments.  相似文献   

20.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号