首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was made of the adsorption of humic substances (HS) by Mn3O4 and by oxide B, a preparation with the β-MnOOH diffraction pattern but having a manganese oxidation state of 3.4. The interactions follow trends found for other oxides. Thus in 0.01 mol dm?3 NaCl adsorption decreases with increasing pH, while it is enhanced by Ca2+. The HS adsorb more strongly to the oxide with the higher zero point of charge (Mn3O4), while the effect of Ca2+ is greater for oxide B.Microelectrophoretic measurements show that the oxide particles take on the electrokinetic characteristics of the adsorbed HS. However it was found that the magnitude of the mobility depends on the underlying oxide surface and on the source of the HS. The electrokinetic properties of the two oxides dispersed in surface water samples of Esthwaite Water, Cumbria, England, can be accounted for by the adsorbed HS together with coadsorbed Ca2+.  相似文献   

2.
3.
The techniques of electron paramagnetic resonance (EPR) were used to measure the concentration ratio of Eu2+ to Eu3+ in quenched silicate liquids as a function of their compositions. The compositional end members were CaAl2Si2O8 and either MSiO3 or M2Si04, M = Mg, (Ca0.5, Mg0.5), and Ca. All of the liquids were quenched from 1650 ± 25°C, 10?6.9±0.6 atm of oxygen, and 10?6.1±0.6 atm total pressure. For a particular choice of M, the ratio of Eu2+ to Eu3+ increased as much as a factor of 24 with increasing atomic ratio (Al + Si)/(O); for a constant value of (Al + Si)/(O), the ratio of Eu2+ to Eu3+ increased in the order Mg > (Ca0.5,Mg0.5) >Ca. In order to interpret the compositional dependence of the redox equilibrium of Eu in a systematic manner, the concept of a solvent coefficient was introduced.  相似文献   

4.
Humic substances (HS) were isolated from Penwhirn Reservoir (PR) and Esthwaite Water (EW) and their removal from solution by centrifugation was studied as a function of pH, humic concentration and molecular weight, and CaCl2 concentration. Large amounts (up to 50%) of PR HS could be removed but only small amounts (? 3%) of EW HS. At pH ? 5 removal of PR HS by Ca2+ can be explained satisfactorily in terms of decreases in humic solubilities induced by complexation with the cation. However, removal induced by protonation of the PR HS is unusual in that it decreases with increasing humic concentration.The results suggest that PR HS comprise a range of molecules differing in solubility, with the high-molecular-weight (40,000) components being the least soluble. The EW HS consist of molecules of weight-average molecular weight 5000 and resemble similarly sized PR HS in that they remain unaggregated in solution even when highly complexed with Ca2+.  相似文献   

5.
Calcite dissolution rates were measured as a function of saturation state in NaCl–CaCl2–MgCl2 solutions at 1 bar (0.1 MPa) pCO2 and 25 °C. Rates measured in phosphate- and sulfate-free pseudo-seawater (Ca2+:Mg2+= 0.2, I= 0.7) were compared with those in synthetic brines. The brines were prepared by co-varying calcium and magnesium (Ca2+:Mg2+= 0.9; 2.0; 2.8; 3.1; 4.8; 5.8) along with ionic strength (I= 0.9; 1.1; 1.6; 2.1; 3.0; 3.7; 4.4 m) to yield solutions approximating those of subsurface formation waters. The rate data were modeled using the equation, R = k(1 ? Omega;) n , where k is the empirical rate constant, n describes the order of the reaction and ω is saturation state. For rates measured in the pseudo-seawater, n= 1.5 and k= 4.7 × 10?2 mol m?2 hr?1. In general, rates were not significantly faster in the synthetic brines (n= 1.4 ± 0.2 and k= 5.0 ± 7 × 10?2 mol m?2 hr?1). The rate coefficients agree within experimental error indicating that they are independent of ionic strength and Ca2+:Mg2+ over a broad range of brine compositions. These findings have important application to reaction-transport modeling because carbonate bearing saline reservoirs have been identified as potential repositories for CO2 sequestration.  相似文献   

6.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

7.
The equations of Pitzer have been used to calculate the stoichiometric ionization constants, pK1HA, for acids in NaCl media at 25°C. The calculated results for the ionization of HAc, H2O, B(OH)3, H2CO?3, H3PO4, H2PO?4, HPO2?4, H3AsO4, H2AsO?4 and HAsO2?4 are in good agreement with the measured values, providing higher order interaction terms (θ and ψ) are used. The pK1HA measurements of these acids in NaCl media containing Mg2+ and Ca2+ were used to determine Pitzer specific interaction parameters at I = 0.7. With these Pitzer coefficients, it was possible to make reliable estimates for the activity coefficients of anions in seawater (S = 35) that form strong interactions with Mg2+ and Ca2+. The calculated activity coefficients yield reliable estimates for the pK1HA of acids in seawater.  相似文献   

8.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

9.
The hydrogeochemical study of groundwater in Dumka and Jamtara districts has been carried out to assess the major ion chemistry, hydrogeochemical processes and groundwater quality for domestic and irrigation uses. Thirty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, anions (F?, Cl?, NO3 ?, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). The analytical results show the faintly alkaline nature of water and dominance of Mg2+ and Ca2+ in cationic and HCO3 ? and Cl? in anionic abundance. The concentrations of alkaline earth metals (Ca2+?+?Mg2+) exceed the alkali metals (Na+?+?K+) and HCO3 ? dominates over SO4 2??+?Cl? concentrations in the majority of the groundwater samples. Ca?CMg?CHCO3 is the dominant hydrogeochemical facies in 60?% of the groundwater samples, while 33?% samples occur as a mixed chemical character of Ca?CMg?CCl hydrogeochemical facies. The water chemistry is largely controlled by rock weathering and ion exchange processes with secondary contribution from anthropogenic sources. The inter-elemental correlations and factor and cluster analysis of hydro-geochemical database suggest combined influence of carbonate and silicate weathering on solute acquisition processes. For quality assessment, analyzed parameter values were compared with Indian and WHO water quality standards. In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. Total hardness and concentrations of TDS, Cl?, NO3 ? , Ca2+ and Mg2+ exceed the desirable limits at a few sites, however, except NO3 ? all these values were below the highest permissible limits. The calculated parameters such as sodium adsorption ratio, percent sodium (%Na) and residual sodium carbonate revealed excellent to good quality of groundwater for agricultural purposes, except at few sites where salinity and magnesium hazard (MH) values exceeds the prescribed limits and demands special management.  相似文献   

10.
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.  相似文献   

11.
Two chemical processes can remove Mg2+ from suspensions containing amorphous silica (am-SiO2) at low temperatures: adsorption and precipitation of a Mg-hydroxysilicate resembling sepiolite. Mg2+ removal from am-SiO2 suspensions was investigated, and the relative role of the two removal processes evaluated, as a function of: pH, ionic strength, Mg2+ concentration, and temperature.The extent of Mg2+ adsorption onto am-SiO2 decreases with increasing NaCl concentration due to displacement of Mg2+ by Na+. At NaCl concentrations of 0.05 M and above, adsorption occurs only at pH values above 8.5, where rapid dissolution of am-SiO2 gives rise to high concentrations of dissolved silica, resulting in supersaturation with respect to sepiolite. Removal of Mg2+, at concentrations of 40 to 650 μM, from am-SiO2 suspensions in 0.70 M NaCl at 25 °C occurs at pH 9.0 and above. Experiments show that under these conditions adsorption and Mg-hydroxysilicate precipitation remove Mg2+ at similar rates. For 0.05 M Mg2+, at 0.70 M ionic strength and 25 °C, measurable Mg2+ removal occurs down to ca. pH 7.5 but is primarily due to Mg-hydroxysilicate precipitation. For the same solution conditions at 5°C, Mg2+ removal occurs above pH 8.0 and is primarily due to adsorption.Assuming that increasing pressure does not greatly enhance adsorption, Mg2+ adsorption onto am-SiO2 is an insignificant process in sea water. The surface charge of pristine am-SiO2 in sea water is primarily controlled by interactions with Na+. The principal reaction between Mg2+ and am-SiO2 in marine sediments is sepiolite precipitation.The age distribution of sepiolite in siliceous pelagic sediments is influenced by temperatures of bottom waters and by geothermal gradients.  相似文献   

12.
This paper provides insight into the quality of groundwater used for public water supply on the territory of Kikinda municipality (Vojvodina, Serbia) and main processes which control it. The following parameters were measured: color, turbidity, pH, KMnO4 consumption, TDS, EC, NH4 +, Cl?, NO2 ?, NO3 ?, Fe, Mn, total hardness, Ca2+, Mg2+, SO4 2+, HCO3 ?, K+, Na+, As. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from 11 analyzed sources is Na–HCO3 type. Intense color and elevated organic matter content of these waters originate from humic substances. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, HCO3 content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering.  相似文献   

13.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

14.
This study investigated the effect of a pine/oak forest canopy on rainfall chemistry in the Qinling Mountains. The area is an important water source for China’s North-to-South Water Transfer Project. Rainfall and throughfall samples were collected at the Huoditang Natural Forest in 1999, 2004, and 2009. Analyses of the samples indicated that the forest canopy had several important effects on rainfall chemistry. Rainfall pH generally increased as water passed through the canopy. On average, the rainfall pH increased by 0.54 pH units. The canopy’s effect declined after deciduous trees lost their leaves late in the sampling season. Rainfall NO3 ? concentrations generally declined as water passed through the forest canopy, but PO4 3? concentrations generally increased. On average, rainfall NO3 ? concentration declined by 0.135 mg/L as it passed though the forest canopy and PO4 3? increased by 0.85 mg/L. The forest canopy had a mitigating effect on the base cation content of throughfall. Specifically, K+, Na+, Ca2+ and Mg2+ were leached from the canopy when the concentration of these cations in rainfall was low. In contrast, K+, Na+, Ca2+ and Mg2+ were absorbed by the canopy when the concentration of these cations in rainfall was high. The pH of rainfall, as well as its K+, Ca2+ and Mg+ concentration, influenced the effect of the forest canopy on the base cation content of throughfall. The concentration of Cd, Pb, and Zn in rainfall generally decreased as water passed through the forest canopy, but the concentration of Fe in rainfall generally increased. The Cd concentration decreased by an average of 3.938 μg/L, the Pb concentration decreased by an average of 8.457 μg/L, and the Zn concentration decreased by an average of 0.986 mg/L. The Fe concentration increased by an average of 0.009 mg/L. The canopy’s ability to absorb Cd declined after several rainfall events in which rainfall Cd concentrations were relatively high.  相似文献   

15.
This study focused on the chemical compositions of the rivers around Yulong Mountain, one of the typical monsoonal temperate glacier regions in China. Water samples were collected from Baishui, Sanshu and Geji hydrological stations around Mt. Yulong during rainy season. The chemical analyses indicated that the river water around Mt. Yulong was characterized by high pH values (>8.0) and EC values varied from 36.4 to 71.7 μS/cm with an average of 52.6 μS/cm. Ca2+ and Mg2+ were the dominant cations, together accounting for about 90 % of the total cations. HCO3 ?, followed by SO4 2?, was the dominant anion. Obvious variations had been perceived during the rainy season. River water chemistry in rainy season was mainly influenced by precipitation and rock weathering. The proportions of Na+, K+, Ca2+, Mg2+ and SO4 2? from precipitation in river water were 23.44, 9.66, 3.10, 17.81 and 10.48 %, respectively. In addition, the ion characteristics of river water were mainly influenced by carbonate weathering. The human activities should not be ignored though its influence was little.  相似文献   

16.
A statistical evaluation of the results of geochemical analyses of geothermal waters during interlaboratory comparison programmes of the International Association of Geochemistry and Cosmochemistry (IAGC) and International Atomic Energy Agency (IAEA) was performed to estimate the uncertainty of measurement of pH, electrical conductivity, Na+, K+, Ca2+, Mg2+, Li+, Cl?, HCO3?, SO42?, SiO2 and B. The uncertainty of measurement was found to increase exponentially with decrease in value (concentration) for all the parameters except for pH, electrical conductivity and SiO2 and was of the same order of magnitude as the concentrations for values of less than 1 μ ml?1. There was an overall uncertainty of ± 2.5% in the measurement of pH and ± 30% in SiO2. For all the other chemical species the uncertainty data were modelled by exponential curves. The sample IAEA14 was prepared by dissolving commercial reagents (i.e., represents a solution of known composition). Thus, the calculated values are considered to be the conventional true values for each chemical parameter. The difference between the measured mean of the data submitted by participating laboratories and the conventional true value for each parameter (i.e., bias of submitted measurements) for the species Na+, K+, Ca2+, Mg2+, Cl? and SO42? was ‐3.5, ‐1.1, ‐13.3, ‐53.6, ‐12.6 and ‐86.6%, respectively. The observed bias was of the same order of magnitude as statistical fluctuations (1s) for Na+ and K+, but significantly higher for Ca2+, Mg2+, Cl? and SO42?. Two methods, uncertainty interval and GUM (“guide to the expression of uncertainty of measurement”) were used to propagate uncertainty in the pH calculation of geothermal reservoir fluid. The application of the methods is illustrated by considering the IAEA10 and IAEA11 samples analysed in the interlaboratory comparisons as separated geothermal waters at atmospheric pressure.  相似文献   

17.
The Narava basin in Visakhapatnam district situated on the east coast is a productive agricultural area, and is also one of the fastest growing urban areas in India. The agricultural and urban-industrialization activities have a lot of impact on this coastal aquifer water quality. The hydrochemistry of the groundwater was analyzed in the basin area with reference to drinking and agricultural purposes. The area is underlain by Precambrian rocks like khondalites, charnockites and migmatites. The water samples were collected from shallow wells for the year 2008. Physical and chemical parameters of groundwater such as pH, total alkalinity (TA), electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, F? were determined. The analytical results revealed that the most of the groundwater found to be in polluted category. Geographical information system (GIS) was utilized to generate different spatial distribution maps of various chemical constituents in the study area. The analytical data were used to compute certain parameters such as salinity hazard, percent sodium (Na%), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), Kelley??s ratio (KR) and corrosivity ratio (CR) to determine the quality of water for agricultural purposes. The abundance of the major ions in the basin area was found to be in the following sequence: Na+?>?Ca2+?>?Mg2+?>?K+:Cl??>?HCO3 ??>?SO4 2??>?NO3 ??>?F?. According to Gibbs?? diagram most of the samples fall under rock dominance. As per Wilcox and USSL classification most of the groundwater samples are suitable for irrigation except few samples which are unsuitable due to the presence of high salinity and high sodium hazard. From the obtained data, it can be concluded that the water quality profile was good and useful for normal irrigation agriculture.  相似文献   

18.
Balram Ambade 《Natural Hazards》2014,70(2):1535-1552
In the present work, chemical characterization and sources of fog water contaminants in the most polluted area of central India, Raipur, and its surroundings are described. The fog water (n = 22) was collected during 2010–2011 from six sites. The physical (i.e., pH, fog amount, electrical conductivity and TDS) and chemical (i.e., F?, Cl?, NO3 ?, SO4 2?, NH4 +, Na+, K+, Mg2+, Ca2+, Al, Mn, Fe, Cu, Zn, Pb and Hg) parameters of the fog water were investigated. The effect of meteorology, i.e., temperature, humidity and wind speed, on the precipitation of the fog water contaminants is discussed. The cluster and factor analysis are used to apportion the sources of the contaminants in the fog water.  相似文献   

19.
The relative contributions of dolomite to calcite weathering related to riverine fluxes are investigated on a highly resolved spatial scale in the diverse watersheds of Slovenia, which previous work has shown have some of the highest carbonate-weathering intensities in the world and suggests that dolomite weathering is favored over limestone weathering in mixed carbonate watersheds. The forested Sava and So?a River watersheds of Slovenia with their headwaters in the Julian Alps drain alpine regions with thin soils (<30 cm) and dinaric karst regions with thicker soils (0 to greater than 70 cm) all developed over bedded Mesozoic carbonates (limestone and dolomite), and siliclastic sediments is the ideal location for examining temperate zone carbonate weathering. This study extends previous work, presenting geochemical data on source springs and documenting downstream geochemical fluctuations within tributaries of the Sava and So?a Rivers. More refined sampling strategies of springs and discrete drainages permit directly linking the stream Mg2+/Ca2+ ratios to the local bedrock lithology and the HCO3 ? concentrations to the relative soil depths of the tributary drainages. Due to differences in carbonate source lithologies of springs and tributary streams, calcite and dolomite weathering end members can be identified. The Mg2+/Ca2+ ratio of the main channel of the Sava River indicates that the HCO3 ? concentration can be attributed to nearly equal proportions by mass of dolomite relative to calcite mineral weathering (e.g., Mg2+/Ca2+ mole ratio of 0.33). The HCO3 ? concentration and pCO2 values increase as soil thickness and alluvium increase for discrete spring samples, which are near equilibrium with respect to calcite. Typically, this results in approximately 1.5 meq/l increase in HCO3 ? from the alpine to the dinaric karst regions. Streams in general do not change in HCO3 ?, Mg2+/Ca2+, or Mg2+/HCO3 ? concentrations down course, but warming and degassing of CO2 produce high degrees of supersaturation with respect to calcite. Carbonate-weathering intensity (mmol/km2-s) is highest within the alpine regions where stream discharge values range widely to extreme values during spring snowmelt. Overall, the elemental fluxes of HCO3 ?, Ca2+, and Mg2+ from the tributary watersheds are proportional to the total water flux because carbonates dissolve rapidly to near equilibrium. Importantly, dolomite weathers preferentially over calcite except for pure limestone catchments.  相似文献   

20.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号