首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
More than 200 venusian channels and valleys have been mapped based on analyses of Magellan SAR images. Sinuous rilles are the most abundant channels among six types of venusian channels, and they are widely distributed on Venus. Morphological characteristics of venusian sinuous rilles include sinuous narrowing reaches, source depressions, and length of several 10s to a few 100s of km. This type of channels is known to exist on the Moon and possibly on Mars. Valley networks on Venus often occur in the vicinity of or in connection to sinuous rilles. Cross-sectional morphologies of sinuous rilles and valley networks are of special importance in discussing their formation processes both qualitatively and quantitatively. We reconstructed cross-sectional profiles of 6 sinuous rilles and 2 valley networks using a new radar clinometric method. Reconstructed cross-sections revealed that floors of the channels and valleys are clearly lower than the surrounding plains. This finding implies that the sinuous rilles and the valley networks have erosional origins. Longitudinal depth profiles of the sinuous rilles show distinct decreasing trends toward the termini. Such decreasing trends of depths are qualitatively in agreement with theoretical models and laboratory experiments of thermal erosion. In order to verify this assertion quantitatively, we conduct simple 1-dimensional model calculations under the assumption that both channel-forming lavas and ground substrate are tholeiitic basalt. For initial lava thicknesses in the range 2-6 m, the model calculations yield good matches to the depth profiles. Estimated duration of lava effusion ranges from several months to a few years. These numerical results support thermal erosion of the sinuous rilles but do not necessarily exclude contributions from mechanical erosion processes. Valley networks seem to have formed under a strong structural control in comparison to sinuous rilles. The valleys vary widely in characteristics of the depth profile and flow directions relative to surface slopes. Therefore valley networks appear to have originated from diverse formation mechanisms.  相似文献   

2.
Lunar rilles and Hawaiian volcanic features: Possible analogues   总被引:1,自引:0,他引:1  
In this paper we consider the origin of rilles on the lunar maria, both sinuous and those having straight line segments, from the point of view of lava tubes formed in surface lava flows, and also in terms of collapses along active fissures. Terrestrial examples of tube formation and collapse, as well as the large-scale collapse of a chain of craters built over an active fissure were observed on the Island of Hawaii by the writers and serve as the basis of comparison with lunar topography shown on Orbiter photographs of the Moon. We also consider the origin of apparent flow channels on steep slopes on the Moon, and conclude that these are often related to early stages in the formation of covered lava tubes.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September, 1971.  相似文献   

3.
Five sinuous rilles occur in mare basalts in the Harbinger Mountains region of the Moon. Complete and accurate topographic data, now available for the first time, make possible a detailed topographic study of these rilles. Rille length ranges from 12 to 79 km and width from 0.8 to 4.8 km. Depth varies from 100 to 300 m and the rilles appear to become shallower to the north. The southern ends of the rilles are characterized by circular to elongate depressions that occur on a 30 km in diameter dome of probable volcanic origin. Longitudinal profiles show that the rille floors have a northward slope of less than one degree. This slope is consistent with the general slope of the surrounding mare surface. Structural studies indicate that slope rather than the regional structural pattern is the dominant factor controlling rille direction. Topographic data lend support to the theory that the rilles were formed as lava channels or tubes.  相似文献   

4.
Laboratory experiments show that albedoes as low as those on the Moon can be produced by vacuum vitrification and associated chemical fractionation of ordinary terrestrial basaltic material. Vitrification is established as an unequivocal process that can account for the low albedo and apparent local darkening with age of the lunar surface. The spectral reflectance curves of glass powders are significantly different than those of the parent rock mineralogy; thus, the presence of ubiquitous glass in lunar surface material complicates compositional determinations by interpretation of spectral reflectance curves. Vitrification of rocks on the Moon may highly modify the chemical composition of the resulting glass; thus, glass fragments found in lunar fines cannot be assumed to represent bulk parent rock material. Progressive impact vitrification of lunar surface material throughout the Moon's history may have led to a fine-grain, opaque, refractory-rich material we call ultimate glass. This unidentified and, at this point, hypothetical component may exist in dark regolith material; if found, it may be a useful indicator of regolith maturity.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

5.
Abstract— Any permanent presence on the Moon will require use of materials from the lunar regolith, the surface soil layer on the Moon. Thus, knowledge of the thickness of the lunar regolith is essential. It has been proposed that crater counts obtained from high Sun angle photography give larger estimates of impact crater equilibrium diameters than for low Sun angle photography, and thus deeper estimates of lunar surface regolith than were previously made using crater morphology, size of blocky rimmed craters, and equilibrium diameters determined on low Sun angle images. The purpose of this comment is to evaluate this result as a means of resolving this important question before planning for future lunar missions is undertaken  相似文献   

6.
Reliable measurements of the Moon's global heat flow would serve as an important diagnostic test for models of lunar thermal evolution and would also help to constrain the Moon's bulk abundance of radioactive elements and its differentiation history. The two existing measurements of lunar heat flow are unlikely to be representative of the global heat flow. For these reasons, obtaining additional heat flow measurements has been recognized as a high priority lunar science objective. In making such measurements, it is essential that the design and deployment of the heat flow probe and of the parent spacecraft do not inadvertently modify the near-surface thermal structure of the lunar regolith and thus perturb the measured heat flow. One type of spacecraft-related perturbation is the shadow cast by the spacecraft and by thermal blankets on some instruments. The thermal effects of these shadows propagate by conduction both downward and outward from the spacecraft into the lunar regolith. Shadows cast by the spacecraft superstructure move over the surface with time and only perturb the regolith temperature in the upper 0.8 m. Permanent shadows, such as from thermal blankets covering a seismometer or other instruments, can modify the temperature to greater depth. Finite element simulations using measured values of the thermal diffusivity of lunar regolith show that the limiting factor for temperature perturbations is the need to measure the annual thermal wave for 2 or more years to measure the thermal diffusivity. The error induced by permanent spacecraft thermal shadows can be kept below 8% of the annual wave amplitude at 1 m depth if the heat flow probe is deployed at least 2.5 m away from any permanent spacecraft shadow. Deploying the heat flow probe 2 m from permanent shadows permits measuring the annual thermal wave for only one year and should be considered the science floor for a heat flow experiment on the Moon. One way to meet this separation requirement would be to deploy the heat flow and seismology experiments on opposite sides of the spacecraft. This result should be incorporated in the design of future lunar geophysics spacecraft experiments. Differences in the thermal environments of the Moon and Mars result in less restrictive separation requirements for heat flow experiments on Mars.  相似文献   

7.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

8.
We measured the concentrations and isotopic compositions of the stable isotopes of He, Ne, Ar, Kr, and Xe in the two lunar impact‐melt breccias Abar al’ Uj (AaU) 012 and Shi?r 166 to obtain information on their cosmic‐ray exposure histories and possible launch pairing; the latter was suggested because of their similar chemical composition. AaU 012 has higher gas concentrations than Shi?r 166 and clearly contains implanted solar wind gases, indicating a shallow to moderate shielding for this meteorite in the lunar regolith. The maximum shielding depth of AaU 012 was most likely ≤310 g cm?2 and its lunar regolith residence time was ≥420 ± 70 Ma. Our results indicate that in Shi?r 166 the trapped component is a mixture of air and solar wind. The low concentration of cosmogenic and solar wind gases indicate substantial diffusive gas loss and a shielding depth of <700 g cm?2 on the Moon for Shi?r 166. All differences seen in the concentrations and isotopic compositions of the noble gases suggest that AaU 012 and Shi?r 166 are most likely not launch pairs, although a different exposure history on the Moon does not exclude the possibility that the two meteorites were ejected by a single, large impact event.  相似文献   

9.
Meteorites ejected from the surface of the Moon as a result of impact events are an important source of lunar material in addition to Apollo and Luna samples. Here, we report bulk element composition, mineral chemistry, age, and petrography of Miller Range (MIL) 090036 and 090070 lunar meteorites. MIL 090036 and 090070 are both anorthositic regolith breccias consisting of mineral fragments and lithic clasts in a glassy matrix. They are not paired and represent sampling of two distinct regions of the lunar crust that have protoliths similar to ferroan anorthosites. 40Ar‐39Ar chronology performed on two subsplits of MIL 090070,33 (a pale clast impact melt and a dark glassy melt component) shows that the sample underwent two main degassing events, one at ~3.88 Ga and another at ~3.65 Ga. The cosmic ray exposure data obtained from MIL 090070 are consistent with a short (~8–9 Ma) exposure close to the lunar surface. Bulk‐rock FeO, TiO2, and Th concentrations in both samples were compared with 2‐degree Lunar Prospector Gamma Ray Spectrometer (LP‐GRS) data sets to determine areas of the lunar surface where the regolith matches the abundances observed on the sample. We find that MIL 090036 bulk rock is compositionally most similar to regolith surrounding the Procellarum KREEP Terrane, whereas MIL 090070 best matches regolith in the feldspathic highlands terrane on the lunar farside. Our results suggest that some areas of the lunar farside crust are composed of ferroan anorthosite, and that the samples shed light on the evolution and impact bombardment history of the ancient lunar highlands.  相似文献   

10.
We performed the first global survey of lunar regolith depths using Lunar Reconnaissance Orbiter Camera (LROC) data and the crater morphology method for determining regolith depth. We find that on both the lunar farside and in the nearside, non-mare regions, the regolith depth is twice as deep as it is within the lunar maria. Our data compare favorably with previous studies where such data exist. We also find that regolith depth correlates well with density of large craters (>20 km diameter). This result is consistent with the gradual formation of regolith by rock fracture during impact events.  相似文献   

11.
By combining UV negatives with IR positives of the full Moon, it is possible to suppress albedo differences and to enhance color differences between various lunar regions. Areas within the lunar maria exhibit the greatest color variations, and many have sharp boundaries. In contrast, the terrae in general show only feeble color variations, although small terra regions situated near or surrounded by maria sometimes display enhanced redness. The mare color boundaries in some cases coincide with the edges of clear-cut lava flows, the bluer material overlying the redder. One wedge-shaped area of bluer material corresponds with a prominent sinuous rille, the rille source being situated precisely in the point of the wedge. This area has obliterated portions of two ray systems, showing that the bluer material was deposited later than both the surrounding redder material and the ray material. On the other hand, rays from the crater Olbers A cross both colored areas impartially. Other examples of ray obliteration by bluer deposits are found elsewhere. From Apollo and Surveyor analyses, it is found that there is an apparent correlation between degree of blueness and titanium content of the surface materials. The following conclusions may be drawn:
  1. The various maria were deposited over considerable lengths of time; this does not support the fusion-through-impact hypothesis.
  2. The bluer materials, which appear to be those of high Ti content, are the more recent.
  3. The hypothesis that sinuous rilles are lava drainage channels is supported.
  4. The terrae covered by this study are mostly monotonous, suggesting constant composition, but a few anomalously red isolated regions may be of substantially different composition.
  相似文献   

12.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

13.
This report describes the distribution and morphology of sinuous rilles and presents data on rille geometry. Examples of the relation between sinuous rilles and the regional structure are given. Leading theories for the origin of sinuous rilles are discussed and evaluated. It is concluded that the general weight of evidence is against water erosion. The ash flow theory is not excluded, but evidence in its favor is weak. The best explanations involve lava tube formation for certain sinuous rilles, and faulting for others. In some cases, a gradation between faulting and igneous activity is noted.  相似文献   

14.
Wenzhe Fa  Mark A. Wieczorek 《Icarus》2012,218(2):771-787
The inversion of regolith thickness over the nearside hemisphere of the Moon from newly acquired Earth-based 70-cm Arecibo radar data is investigated using a quantitative radar scattering model. The radar scattering model takes into account scattering from both the lunar surface and buried rocks in the lunar regolith, and three parameters are critically important in predicting the radar backscattering coefficient: the dielectric constant of the lunar regolith, the surface roughness, and the size and abundance of subsurface rocks. The measured dielectric properties of the Apollo regolith samples at 450 MHz are re-analyzed, and an improved relation among the complex dielectric constant, bulk density and regolith composition is obtained. The complex dielectric constant of the lunar regolith is estimated globally from this relation using the regolith composition derived from Lunar Prospector gamma-ray spectrometer data. To constrain the lunar surface roughness and abundance of subsurface rocks from radar data, nine regions are selected as calibration sites where the regolith thickness has been estimated using independent analysis techniques. For these sites, scattering from the lunar surface and buried rocks cannot be perfectly distinguished, and a tradeoff relationship exists between the size and abundance of buried rocks and surface roughness. Using these tradeoff relations as guidelines for globally representative parameters, the regolith thickness of four regions over the lunar nearside is inverted, and the inversion uncertainties caused by calibration errors of the radar data and model input parameters are analyzed. The regolith thickness of the maria is generally smaller than that of highlands, and older surfaces have thicker regolith thicknesses. Our approach cannot be applied to regions where the surface roughness is very high, such as with young rocky craters and regions in the highly rugged highlands.  相似文献   

15.
The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the Moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the Moon of these volatile elements are considered.  相似文献   

16.
We discuss observations of the Moon at a wavelength of 49.3 cm made with the Owens Valley Radio Observatory Interferometer. These observations have been fit to models in order to estimate the lunar dielectric constant, the equatorial subsurface temperature, the latitude dependence of the subsurface temperature, and the subsurface temperature gradient. The models are most consistent with a dielectric constant of 2.52 ± 0.01 (formal errors), an equatorial subsurface temperature of 249?5+8K, and a change in the subsurface temperature with latitude (ψ), which is proportional to cos0.38ψ. Since the temperature of the Moon has been measured by the Apollo Lunar Heat Flow Experiment, we have been able to use our determination of the equatorial temperature to estimate the error in the flux density calibration scale at 49.3cm (608 MHz). This results in a correction factor of 1.03 ± 0.04, which must be applied to the flux density scale. This factor is much different from 1.21 ± 0.09 estimated by Muhleman et al. (1973) from the brightness temperature of Venus and apparently indicates that the observed decrease in the brightness temperature of Venus at long wavelengths is a real effect.The estimates of the temperature gradient, which are based on the measurement of limb darkening, are small and negative (temperature decreases with depth) and may be insignificantly different from zero since they are only as large as their formal errors. We estimate that a temperature gradient in excess of 0.6K/m at 10m depth would have been observed. Thus, a temperature gradient like that measured in situ at the Apollo 15 and 17 landing sites in the upper 2m of the regolith is not typical of the entire lunar frontside at the 10m depths where the 49.3 cm wavelength emission originates. This result may indicate that the mean lunar heat flow is lower than that measured at the Apollo landing sites, that the thermal conductivity is greater at 10m depth than it is at 2m depth, or that the radio opacity is greater at 10m depth than at 2m depth. The negative estimates of the temperature gradient indicate that the Moon appeared limb bright and might be explained by scattering of the emission from boulders or an interface with solid rock. The presence of solid rock at 10m depths will probably cause heat flows like those measured by Apollo to be unobservable by our interferometric method at long wavelengths, since it will cause both the thermal conductivity and radio opacity of the regolith to increase. Thus, our data may be most consistent with a change in the physical properties of the regolith to those of solid rock or a mixture of rock and soil at depths of 7 to 16m. Our results show that future radio measurements for heat flow determinations must utilize wavelengths considerably shorter than 50 cm (25 cm or less) to avoid the rock regions below the regolith.  相似文献   

17.
Long experience of ground-based and cosmic studies of the Moon has shown that space-weathering processes play a key role in the formation of the surface layers of atmosphereless bodies. Undoubtedly, the surface of Mercury, which is subjected to the same processes, is covered by a mantle of shattered rocks—the regolith. The structure of the reflecting layer determines the photometric and polarization characteristics of the surface of a planetary body. Despite the general similarity of the integral optical properties of the surfaces of Mercury and the Moon, specific characteristics of the media of these celestial bodies manifest themselves as certain differences in the details of the measured parameters. Moreover, the similarity to the Moon permits in-depth interpretation of the results of remote observations of Mercury, such as integral polarimetry and integral spectropolarimetry. The data obtained suggest that the general structure of the surface layer of the Mercurian regolith is very similar to the structure of the lunar soil, although it is somewhat smoother and probably has a greater amount of the fine-grained fraction. The soil maturity matches the content of about 80% of the secondary particles. At the same time, the exposure age of the soil, which has the same degree of maturity, is less than the age of the soil formed under lunar conditions.  相似文献   

18.
Abstract— Knowledge of regolith depth structure is important for a variety of studies of the Moon and other bodies such as Mercury and asteroids. Lunar regolith depths have been estimated using morphological techniques (i.e., Quaide and Oberbeck 1968; Shoemaker and Morris 1969), crater counting techniques (Shoemaker et al. 1969), and seismic studies (i.e., Watkins and Kovach 1973; Cooper et al. 1974). These diverse methods provide good first order estimates of regolith depths across large distances (tens to hundreds of kilometers), but may not clearly elucidate the variability of regolith depth locally (100 m to km scale). In order to better constrain the regional average depth and local variability of the regolith, we investigate several techniques. First, we find that the apparent equilibrium diameter of a crater population increases with an increasing solar incidence angle, and this affects the inferred regolith depth by increasing the range of predicted depths (from ~7–15 m depth at 100 m equilibrium diameter to ~8–40 m at 300 m equilibrium diameter). Second, we examine the frequency and distribution of blocky craters in selected lunar mare areas and find a range of regolith depths (8–31 m) that compares favorably with results from the equilibrium diameter method (8–33 m) for areas of similar age (~2.5 billion years). Finally, we examine the utility of using Clementine optical maturity parameter images (Lucey et al. 2000) to determine regolith depth. The resolution of Clementine images (100 m/pixel) prohibits determination of absolute depths, but this method has the potential to give relative depths, and if higher resolution spectral data were available could yield absolute depths.  相似文献   

19.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

20.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号