首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed cyclostratigraphy is present in the rhythmically bedded Cenomanian hemipelagic chalks of the northern Anglo-Paris Basin, which can be correlated over 100,000 km2. Individual decimetre-scale couplets probably represent the precession cycle (modes at 18 or 23 kyr), and can be readily grouped in sets averaging five, indicative of the short cycle of eccentricity (100 kyr). A composite cyclostratigraphy for the basin is presented here, and is used as the basis for a Cenomanian time-scale (20 and 100 kyr units). The total duration of the Cenomanian thus obtained (4.4 Myr) compares well with recent radiometric dates of 4.0–4.5 Myr. The time-scale is used to estimate the length of ammonite, inoceramid, and planktonic foraminiferal zones, the rates of formation of authigenic minerals (glauconite), sedimentation rates and the duration of transgressions and anoxic events.  相似文献   

2.
A high-resolution, biostratigraphic (calcareous nannofossils, calpionellids), chemostratigraphic (C-isotope) and cyclostratigraphic (magnetic susceptibility) study was performed on the marl–limestone alternations of the Upper Berriasian–Valanginian Orpierre section, deposited in the hemipelagic setting of the Vocontian Basin (SE France). The main aims of this study were to detect orbital forcing, to estimate the duration of the Valanginian “Weissert” episode, and to discuss the palaeoenvironmental implications. Detailed calcareous nannofossil biochronology allowed the recognition of Upper Berriasian–Lower Hauterivian biohorizons. The general trends of the δ13C curve and the major positive C-isotope excursion (amplitude of 1.8‰) recorded at the Orpierre section are very similar to those found in other sections worldwide. Spectral analysis applied on high-resolution magnetic susceptibility (MS) variations coupled with frequency ratio method reveals a strong cyclic pattern related to the Earth's orbital parameters (precession, obliquity and eccentricity). The prominent 405 kyr eccentricity cycle in the MS signal and has been used as a geochronometer to time calibrate the section. The duration of the Weissert episode was estimated as 2.08 Myr. This duration is coherent with those obtained from the Umbria Marche Basin (∼2.3 Myr) and from the Angles section (∼2.14 Myr). Durations of more than 2 Myr suggest that a long perturbation in the dynamic of the global carbon cycle that is not compatible with the rapid and intense volcanic activity. Our cyclostratigraphic study indicates a minimal duration of 4.29 Myr for the Valanginian stage. The comparison between the MS signal at Orpierre and the spectral gamma-ray signal recently obtained in two composite sections of the Vocontian Basin allows to propose a revised duration for the Valanginian stage of 4.695 Myr instead of 5.08 Myr.  相似文献   

3.
High resolution(939 samples)total organic carbon content(TOC)analyses were conducted on the Shuanghe Section of^152.6 m in the Changning area,Sichuan Basin.The sampling section was divided into two units considering the distinct-different deposit environment and sediments accumulation rate.The lower part(Unit 1)and the peer part(Unit 2)with high resolution sample spacing(0.08–0.4 m)enables the identification of the precession cycle in two sedimentary sequences with distinct different sedimentary accumulation rate.MTM Power spectral analyses on untuned TOC series reveals significant peaks exceeding above the 95%confidence level and shows that both Unit 1 and Unit 2 have recorded Milankovitch cycles of 405 kyr long eccentricity,short eccentricity,obliquity and precession.The floating astronomical time scale(ATS)was constructed on the Shuanghe Section in the Early Silurian(~439.673–444.681 Ma),and which was calibrated by 405 kyr long eccentricity cycles.The total duration of the Wufeng and Longmaxi shales is 5.01 Myr.The floating ATS used for estimating the duration of the graptolite zones and each stage in the study interval.Finally,we postulated two models that could verify the linkage between orbital cycle and organic accumulation.To make sure whether productivity or preservation is the main factor that under long eccentricity control,the phase correlation between the obtained filtered signal and the theoretical orbital solution should be made clear in the further research.  相似文献   

4.
A continuous terrestrial succession was recovered from the Songke-2(SK-2) borehole in the Songliao Basin, Northeastern China. This borehole provides a unique material for further research on the continental paleoclimate during Cretaceous greenhouse period, following a series of achievements of the Songke-1(SK-1) core. In this study, thorium(Th) logging data were chosen as a paleoclimate proxy to conduct a detailed cyclostratigraphic analysis. The Th series varies quasi-periodically; power spectra and evolutionary fast Fourier transformation(FFT) analysis reveal significant cycles in the Quantou(K2 q), Qingshankou(K2 qn), Yaojia(K2 y) and Nenjiang(K2 n) formations. The ratio of cycle wavelengths in these stratigraphic units is approximately 20:5:2:1, corresponding to long orbital eccentricity(405 kyr), short orbital eccentricity(100 kyr), obliquity(37 kyr), and precession cycles(22.5 kyr and 18.4 kyr). The durations of the K2 n, K2 y, K2 qn and K2 q are estimated as 6.97, 1.83, 5.30 and 4.52 Myr, respectively, based on the constructed ~18.62 Myr "floating" astronomical time scale(ATS). Comparison of the durations between the SK-1 s and SK-2 boreholes exhibits a slight difference of 0.06 Myr and 0.459 Myr for K2 qn and K2 y. Nevertheless, our ATS of K2 n supports the chronostratigraphic frame constructed by the CA-ID-TIMS data of the SK-1 s borehole. This new "floating" ATS provides precise numerical ages for stratigraphic boundaries, biozones and geological events in the Songliao Basin, and can serve as a basis for correlation of strata and events between marine and terrestrial systems.  相似文献   

5.
《Gondwana Research》2014,26(4):1348-1356
The Early Toarcian Oceanic Anoxic Event (OAE) in the Early Jurassic Period is associated with a major negative carbon isotope excursion (CIE), mass extinction, marine transgression and global warming. The Toarcian OAE is thought to have been caused by flood basalt magmatism, and may have been a trigger for mass extinction. However, these proposed causes of the Toarcian OAE and associated biotic crisis are not adequately resolved by a precise chronology. The duration of the Toarcian OAE has been estimated to be anywhere from ~ 0.12 to ~ 0.9 Myr, most recently 0.74 to 3.26 Myr from U–Pb dating. The CIE associated with the Toarcian OAE has a similar pattern at numerous localities, and there is evidence that the marine carbon isotope variations recorded astronomical forcing signals. Here we estimate a duration of ~ 620 kyr for the main negative CIE, ~ 860 kyr for the polymorphum zone and > 1.58 Myr for the levisoni zone based on 405-kyr astronomical eccentricity tuning of the marine section at Peniche (Portugal). This 405-kyr tuned series provides a ~ 2.5 Myr continuous high-resolution chronology through the Early Toarcian. There are 6, or possibly 7 short eccentricity cycles in the main CIE interval at Peniche. To confirm this astronomically based estimate, we analyzed three other sections at Yorkshire (UK), Dotternhausen (Germany), and Valdorbia (Italy) from marine carbon isotopic series. These four stratigraphic sections from Early Jurassic western Tethys record the Toarcian OAE with ~ 6 prominent carbon isotope cycles in the CIE that span a 600 ± 100 kyr duration. The Peniche 405-kyr tuned series indicates that the pre- and post-CIE intervals experienced strong precession–eccentricity-forced climate change, whereas the CIE interval is marked by dominant obliquity forcing. These dramatic and abrupt changes in astronomical response in the carbon isotopes point to fundamental shifting in the Early Toarcian paleoclimate system that was directly linked to the global carbon cycle.  相似文献   

6.
The Aptian-Albian 'Scisti a Fucoidi' varicoloured pelagic sediments in central Italy, show a 'couplet' alternation of carbonate-rich/carbonate-poor layers, which are interpreted as the sedimentary expression of precession (frequency 19–23 kyr). Carbonate content, chromatic variation, and planktonic foraminiferal abundance were analysed at a 1-cm spacing for a 10-m interval of the Piobbico core, specifically drilled through this formation. Spectral analysis of these parameters shows a prominent signal equated to the c . 100 kyr cycle of orbital eccentricity at a sedimentation rate of 5 mm kyr−1. The coherency of the spectral response of each parameter suggests that a single mechanism controlled the whole sedimentary record. Detailed study of planktonic foraminiferal distribution of the same section at 1-mm scale resolves the Milankovitch frequencies of 41 kyr and 18 to 23 kyr, equated with the obliquity and precessional cycles. But foraminiferal abundance is not in phase with carbonate content, which was largely controlled by calcareous nannofossils, but peaked at intermediate carbonate values. The proposed model for explaining the discrepancy at the precessional level is that foraminifera thrived at intermediate values of the precession index, when the environment was only moderately fertile but stable, while during highs of the precession index, mixing of the water column increased fertility and caused calcareous nannofossil blooms and restriction of planktonic foraminifera to few and tolerant species. The resulting bimodality of foraminiferal abundance per precessional cycle appears to be recorded in the spectrum by peaks at the 11 and 14 kyr levels. Cross correlation of foraminiferal abundances with the calcium carbonate curve over 1–2 Myr intervals produces discrepant results (apparent phase lags) which we attribute to differences in the response to the fundamental eccentricity cycles.  相似文献   

7.
An integrated study of the ammonites, inoceramid bivalves, planktonic foraminifera, calcareous nannofossils, geochemistry, stable carbon isotopes, and cyclostratigraphy is provided for the upper Middle to upper Upper Albian sucession exposed in the Col de Palluel section east of Rosans in Hautes-Alpes, France. The Albian-Cenomanian boundary interval described by Gale et al. at Mont Risou is re-examined, a total thickness of 370 m of the Marnes Bleues Formation. Zonal schemes based on ammonites, inoceramid bivalves, planktonic foraminifera, and calcareous nannofossils are integrated with the stable carbon isotope curve and key lithostratigraphic markers to provide a sequence of more than 70 events in the uppermost Middle Albian to basal Cenomanian interval. Time series analysis of the Al2O3 content of the 500 m Albian sequence present in the Col de Palluel and Risou sections reveals the presence of the 20 kyr precession, 40 kyr tilt, 100 kyr short eccentricity, and 406 kyr long eccentricity cycles. Correlation using planktonic foraminiferan and nannofossil data provide a link between the Col de Palluel and Risou sections and the Italian sequence at Gubbio, and in the Piobbico core. This provides a basis for the extension of the orbital time scale of Grippo et al. to the sequence. It reveals a major break in the Col de Palluel succession at the top of the distinctive marker bed known as the Petite Vérole that may represent as much as 2 Ma. It also provides a basis for the estimation of the length of the Albian Stage at 4.12 Ma, 0.8 Ma for the early Albian, 2.84 Ma for the Middle Albian, and 3.68 Ma for the late Albian substages.  相似文献   

8.
《Sedimentology》2018,65(5):1520-1557
Since the beginning of the century, several authors have hypothesized and documented the presence of bottom currents during the deposition of mudstones, including mudstones rich in organic matter, challenging the assumption that persistent low‐energy conditions are necessary prerequisites for deposition of such sediments. More processes responsible for transport and deposition of mudstones mean also more processes acting contemporaneously in different parts of a basin. Without a precise and robust chronostratigraphic framework, however, it is not possible to characterize these differences. The new data reported here provide a profoundly different understanding of the controls on sedimentation in distal continental shelf platforms. To enhance the understanding of the different coeval environments of deposition coexisting in a muddy system, the Upper Cretaceous Eagle Ford Group, deposited on the Comanche carbonate platform, has been investigated by integrating sedimentology, mineralogy, geochemistry and palaeoecology, and creating age models in different physiographic sectors using biostratigraphy and geochronology. Data from two cores and 41 outcrops were analysed with a telescopic approach, from grain scale to basin scale. Nine temporal stages over a ca 8 Myr interval (ca 98 to 90 Ma) were defined in an area that spans 75 000 km2. Finally, the different environments of deposition recorded within each of the nine stages were interpreted. The construction of the chronostratigraphic framework also allowed: measuring the duration of a basin‐wide gradational increase in energy in the water column (ca 1 Myr) and a hiatus confined into the shallower water sector (ca 2 Myr); determining the mean eruption frequency of volcanoes (ca 9 kyr); and the time of inundation of the Western Interior Seaway (97·5 to 97·1 Ma). The context, the outcrops–cores–logs correlations, the large data set (Appendix  S1 ), the high‐precision and well‐calibrated constraints represent an unprecedented contribution for future regional facies models of organic‐rich units and for improvements of key aspects in the industry of unconventional resources.  相似文献   

9.
Stratigraphic sections across the Cenomanian/Turonian boundary (C/T boundary) are identified in New Zealand and were deposited in southern high latitudes of the palaeo-Pacific. Lithological evidence for Cretaceous Oceanic Anoxic Event 2 (OAE2), which preceded and spanned the C/T boundary, is lacking in these sections. The correlative interval is identified, however, from a positive 2‰ carbon isotope excursion (CIE) and from clustered highest occurrences of Cenomanian-restricted dinoflagellate taxa together with the lowest occurrence of Turonian Heterosphaeridium difficile. A zone lacking benthic macrofossils encompasses the CIE. In some sections, this interval is also characterized by distinctive red mudstone beds; the thickest such red bed (6–18 m thick) may overlap or just overlie the main part of the CIE interval. Shelly macrobenthos, notably inoceramid bivalves, disappeared >500 kyr prior to the CIE. This suggests that environmental deterioration associated with OAE2 may have preceded the inferred volcanic trigger that has been identified from other regions. Strong intermediate water depth oxia during OAE2, which contrasts with oceanic anoxic conditions that occurred elsewhere on the globe, apparently prevailed during the later phase of OAE2 in the southernmost Pacific. New data from New Zealand indicate that causal mechanism(s) of OAE2 may be complex.  相似文献   

10.
Two parallel drilling cores, BDP96-1 (200 m), and BDP96-2 (100 m), have been taken from top of the underwater Akademichesky Ridge in Lake Baikal and dated by paleomagnetic techniques. These cores are part of the Baikal Drilling Project (Kuzmin et al., 1997a, b). Diatom analysis of the first 100 m of these sediments reveals that they store a 2.5 Myr high-resolution continuous record of the palaeoclimates of East Siberia. Sediments belonging to warmer climates have a high content of diatom algae frustules, whereas those belonging to global glaciations are diatom-barren. The record of Upper Pleistocene (500 kyr BP) strongly correlates with the oceanic SPECMAP curve and contains distinct 100, 41, 23, and 19 kyr periods, as revealed by Fourier analysis. Diversity of diatom species was small in Pliocene. Abrupt and frequent changes of the climate in Pleistocene resulted in frequent dramatic changes in the diatom communities. The extant dominating endemics, Cyclotella minuta and Aulacoseira baicalensis, became important in Lake Baikal 760 kyr and less than 120 kyr BP, respectively.  相似文献   

11.
The Eocene–Oligocene transition marks the passage from 'greenhouse' conditions to an 'icehouse' state, with progressive global cooling starting in the early middle Eocene. The late Eocene presents substantial evidence for extraterrestrial impacts whose effects on living organisms and climatic changes are still not completely clear. A high-resolution, microfloral and faunal investigation has been carried out in a 4-m-thick segment of the Massignano Global Stratotype Section and Point for the Eocene–Oligocene boundary. The studied interval includes a late Eocene (35.7 ± 0.4 Myr old) impactoclastic layer containing several cosmic signatures. The impact event recorded at Massignano had no abrupt, dramatic effects on marine biota in terms of extinction. However, significant quantitative changes in the calcareous plankton and dinoflagellate cyst assemblages occurred 60 kyr after the impact event. The observed pattern is intepreted as reflecting a long-term re-organization of water structure.  相似文献   

12.
13.
The Upper Permian (Zechstein) slope carbonates in the Roker Formation (Zechstein 2nd‐cycle Carbonate) in North‐east England consist of turbidites interbedded with laminated lime‐mudstone. Studies of turbidite bed thickness and relative proportion of turbidites (percentage turbidites in 20 cm of section) reveal well‐developed cyclicities consisting of thinning‐upward and thickening‐upward packages of turbidite beds. These packages are on four scales, from less than a metre, up to 50 m in thickness. Assuming that the laminae of the hemipelagic background sediment are annual allows the durations of the cycles to be estimated. In addition, counting the number and thickness of turbidite beds in 20 cm of laminated lime‐mudstone, which is approximately equivalent to 1000 years (each lamina is 200 μm), gives the frequencies of the turbidite beds, the average thicknesses and the overall sedimentation rates through the succession for 1000 year time‐slots. Figures obtained are comparable with modern rates of deposition on carbonate slopes. The cyclicity present in the Roker Formation can be shown to include: Milankovitch‐band ca 100 kyr short‐eccentricity, ca 20 kyr precession and ca 10 kyr semi‐precession cycles and sub‐Milankovitch millennial‐scale cycles (0·7 to 4·3 kyr). Eccentricity and precession‐scale cycles are related to ‘highstand‐shedding’ and relative sea‐level change caused by Milankovitch‐band orbital forcing controlling carbonate productivity. The millennial‐scale cycles, which are quasi‐periodic, probably are produced by environmental changes controlled by solar forcing, i.e. variations in solar irradiance, or volcanic activity. Most probable here are fluctuations in carbonate productivity related to aridity–humidity and/or temperature changes. Precession and millennial‐scale cycles are defined most strongly in early transgressive and highstand parts of the larger‐scale short‐eccentricity cycles. The duration of the Roker Formation as a whole can be estimated from the thickness of the laminated lithotype as ca 0·3 Myr.  相似文献   

14.
We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature.These events include times of marine and non-marine extinctions,major ocean-anoxic events,continental flood-basalt eruptions,sea-level fluctuations,global pulses of intraplate magmatism,and times of changes in seafloor-spreading rates and plate reorganizations.The aggregate of all 89 events shows ten clusters in the last 260 Myr,spaced at an average interval of~26.9 Myr,and Fourier analysis of the data yields a spectral peak at 27.5 Myr at the≥96%confidence level.A shorter period of~8.9 Myr may also be significant in modulating the timing of geologic events.Our results suggest that global geologic events are generally correlated,and seem to come in pulses with an underlying~27.5-Myr cycle.These cyclic pulses of tectonics and climate change may be the result of geophysical processes related to the dynamics of plate tectonics and mantle plumes,or might alterna-tively be paced by astronomical cycles associated with the Earth's motions in the Solar System and the Galaxy.  相似文献   

15.
刘欣宇  李永祥 《沉积学报》2021,39(5):1171-1184
发生于白垩纪中期塞诺曼期—土伦期之交的大洋缺氧事件2(OAE2)被认为是研究大洋缺氧事件形成与其他地质过程异常的重要窗口。重建晚塞诺曼期OAE2事件发生之前的古海洋环境对于理解OAE2的成因机制至关重要。因而选择沉积速率快且有高分辨率年代标尺的西藏定日地区OAE2剖面事件层位之下冷青热组地层开展了详细的岩石磁学研究,旨在为重建研究区晚塞诺曼期古海洋环境演化提供新约束。对剖面-5.20 m 至30 m的地层以10 cm间隔采样352个,并测得这些样品的磁化率,重点对-5.20 m至0 m样品测量其非磁滞剩磁,饱和等温剩磁等岩石磁学参数。结合已有的0 m 至37.2 m的岩石磁学数据,获得了-5.20 m至37.2 m的完整的岩石磁学记录,并将其年龄限定为(95.58±0.15) Ma至(94.55±0.15) Ma。岩石磁学结果显示1)95.58~95.10 Ma期间磁性矿物含量增多,反映沉积区物源供给逐渐增多。这很可能是由于晚塞诺曼期全球海平面下降(KCe4)所导致,且(95.10±0.15) Ma时海平面下降至最低。2)磁性矿物种类变化反映定日地区古海洋环境在~94.7 Ma发生了较显著变化,从95.10~94.70 Ma期间亚氧化为主的环境逐渐演变为~94.7 Ma后趋于缺氧的海洋环境。这很可能是由于95.10 Ma海平面上升及相伴的低氧带(OMZ)扩张至研究区所致。研究限定的(95.10±0.15) Ma作为全球海平面上升的初始时间可为研究其他OAE2剖面海平面上升对OAE2形成的影响提供重要的年代约束。结合晚塞诺曼期活跃的火山活动,我们认为晚塞诺曼期全球性海平面上升和火山活动共同作用导致了OAE2事件的发生。  相似文献   

16.
The Kaskapau and Cardium Formations span Late Cenomanian to Early Coniacian time and were deposited on a low‐gradient foredeep ramp. The studied portion of the Kaskapau Formation spans ca 3·5 Myr and forms a mudstone‐dominated wedge thinning from 700 to <50 m from SW to NE over ca 300 km. In contrast, the Cardium Formation spans about 2·1 Myr, is about 100 m thick, sandstone‐rich and broadly tabular. The Kaskapau and Cardium Formations are divided, respectively, into 28 and nine allomembers, each bounded by marine flooding surfaces. Kaskapau allomembers 1 to 7 show about 200 km of offlap from the forebulge, accompanied by progradation of thin sandstones from the eroded forebulge crest. In contrast, Kaskapau allomembers 8 to 28 and Cardium allomembers C1 to C9 show overall onlap onto the forebulge of about 350 km, and contain no forebulge‐derived sandstones. This broad pattern is interpreted as recording a latest Cenomanian pulse of tectonic loading which led to shoreline back‐step in the proximal foredeep and coeval uplift of the forebulge, leading to erosion. The advance of the sediment wedge after Kaskapau allomember 7 is attributed primarily to the isostatic effect of a distributed sediment load; the advance of the orogenic wedge had a subordinate effect on subsidence of the forebulge. For Kaskapau allomembers 1 to 6, isopachs trend north to south, suggesting a load directly to the west; allomembers 7 to 28 show an abrupt rotation of isopachs to NW–SE, suggesting that the load shifted several hundred kilometres to the south. This re‐orientation might be related to a change from an approximately orthogonal to a dextral transpressive stress regime. Within the longer‐term offlap–onlap cycle recorded by the Kaskapau and Cardium Formations, individual allomembers are grouped into packages reflecting higher‐frequency onlap–offlap cycles, each spanning ca 0·5 to 0·7 Myr. Offlap from the forebulge tends to be accompanied by more pronounced transgression in the foredeep, whereas onlap onto the forebulge is accompanied by progradation of tongues of shoreface sandstone. This relationship suggests that changes in deformation rate in the orogenic wedge modulated proximal subsidence rate, enhancing or suppressing shoreline progradation, and also causing subtle uplift or subsidence of the forebulge region. Wedge‐shaped allomembers in the Kaskapau Formation contain shoreface sandstone and conglomerate that prograded, respectively, <40 and <25 km from the preserved basin margin; progradation of coarse clastics was limited by rapid flexural subsidence. Tabular allomembers of the Cardium Formation imply a low flexural subsidence rate and contain sandy and conglomeratic shoreface deposits that prograded up to ca 180 km from the preserved basin margin. This relationship suggests that low rates of flexural subsidence promoted steeper alluvial gradients, more vigorous gravel transport and more extensive shoreface progradation. Overall, observed stratal geometry and facies distribution is explained readily in terms of current elastic flexural models. Most shoreface sandstones in the proximal foredeep show evidence of forced regression. Eustasy provides the most plausible explanation for relative sea‐level rise–fall cycles on the 125 kyr allomember timescale. Geometric relationships suggest eustatic oscillations of about 10 m. Forced regressive shoreface development was suppressed during Kaskapau allomembers 1 to 10 when the rate of flexural subsidence was at its highest.  相似文献   

17.
In this study, the clay and heavy mineral analysis of ODP Site 911 sediments is used to investigate the sources and transport mechanisms (sea ice and oceanic currents) of sediments in the Arctic Ocean during the Mid to Late Pliocene (3.10–2.78 Myr) and upper Quaternary (800 kyr to the present). The time period between 3.10 and 3.00 Myr is characterized by a decreasing smectite and increasing illite content, which is interpreted as reflecting cooling conditions. At the beginning of the Mid-Pliocene Global Warmth period at ∼3.00 Myr, the smectite content shows an abrupt increase. This change can also be seen as a drop in the amount of kaolinite and TOC. After 3.00 Myr the kaolinite and TOC values start to increase, probably indicating high rates of reworked glacially eroded matter. During the Pleistocene, smectite shows a lower and illite a higher fluctuation level compared with the Pliocene. This might be due to reigning glacial conditions during the Pleistocene, when the freshwater input was much lower than during the Pliocene. During the Pliocene, the fluctuating heavy minerals might reflect changes in freshwater input from the great Siberian rivers, which would have led to changes in the supply of terrigenous material delivered to the shelf by the rivers. The heavy mineral fluctuation also reflects changes in the amount of sea-ice formation, which correlates with climate variations and the freshwater input from the continent. Based on the composition of the clay and heavy mineral groups in this study, the most likely transportation path is the Siberian branch of the Transpolar Drift.  相似文献   

18.
A sea ice record for Barrow Strait in the Canadian Arctic Archipelago (CAA) is presented for the interval 10.0–0.4 cal. kyr BP. This Holocene record is based primarily on the occurrence of a sea ice biomarker chemical, IP25, isolated from a marine sediment core obtained from Barrow Strait in 2005. A core chronology is based on 14C AMS dating of mollusc shells obtained from ten horizons within the core. The primary IP25 data are compared with complementary proxy data obtained from analysis of other organic biomarkers, stable isotope composition of bulk organic matter, benthic foraminifera, particle size distributions and ratios of inorganic elements. The combined proxy data show that the palaeo-sea ice record can be grouped according to four intervals, and these can be contextualised further with respect to the Holocene Thermal Maximum (HTM). Spring sea ice occurrence was lowest during the early–mid Holocene (10.0–6.0 cal. kyr BP) and this was followed by a second phase (6.0–4.0 cal. kyr BP) where spring sea ice occurrence showed a small increase. Between 4.0 and 3.0 cal. kyr BP, spring sea ice occurrence increased abruptly to above the median and we associate this interval with the termination of the HTM. Elevated spring sea ice occurrences continued from 3.0 to 0.4 cal. kyr BP, although they were more variable on shorter timescales. Within this fourth interval, we also provide evidence for slightly lower and subsequently higher spring sea ice occurrence during the Mediaeval Warm Period and the Little Ice Age respectively. Comparisons are made between our proxy data with those obtained from other palaeo-climate and sea ice studies for the CAA.  相似文献   

19.
A detailed stratigraphic analysis was carried out on the Lower–Middle Cenomanian hemipelagic deposits of the Blieux section (Alpes-de-Haute-Provence; southeast France) in order to identify the Middle Cenomanian event I (MCE I) in the Vocontian Basin. These deposits are represented by five bundles composed of limestone–marl alternations that are separated by thick marly intervals. The Blieux section, which is well exposed, very thick, continuous and relatively rich in macrofauna, provides an ideal succession for an integrated approach. Biostratigraphy by ammonoids and sequence stratigraphy have been established for the whole succession whereas calcareous nannofossil and geochemical analyses have been carried out on a restricted interval across the Lower/Middle Cenomanian boundary. The uppermost part of the Mantelliceras mantelli Zone, the Mantelliceras dixoni Zone and the lower part of the Acanthoceras rhotomagense Zone have been recognized. The appearance of the genus Cunningtoniceras (C. inerme or C. cunningtoni) is used to place the base of the A. rhotomagense Zone and the Lower/Middle Cenomanian boundary. This boundary is also well characterized by the presence of nannofossil Subzone UC2C. Two orders of hierarchically stacked depositional sequences have been identified. Medium- and large-scale sequences correspond to 400 ky eccentricity cycles and to third-order cycles, respectively. The duration of the interval studied (from the uppermost part of the M. mantelli to the lower part of the A. rhotomagense zones) is estimated to be 2.8 my. Carbon-isotope values determined from bulk carbonate sediments show a first positive excursion (+0.6‰) corresponding to the MCE Ia, in the lower part of the A. rhotomagense Zone. A subsequent increase (+1.1‰) is recorded and could correspond to MCE Ib, but a sharp return to baseline values as expected in an excursion is not observed. The duration of the MCE I is estimated to be less than 400 ky. The Blieux section is correlated with some classical sections of the Anglo-Paris (Southerham, Folkestone, Cap Blanc-Nez) and Lower Saxony (Baddeckenstedt and Wunstorf) basins using ammonoid biostratigraphy, sequence stratigraphy, and chemostratigraphy. It is proposed as a candidate for the Middle Cenomanian GSSP (Global Boundary Stratotype Section and Point).  相似文献   

20.
为了研究白垩纪中期大洋缺氧事件及其后古海洋环境的变化,对藏南贡扎剖面白垩纪赛诺曼阶/土伦阶和三冬阶/坎 潘阶界线附近的浅海相沉积地层开展了详细的岩石磁学对比研究。 结果显示,这两个时间段的沉积物中磁性矿物含量和粒 度无显著区别,但赛诺曼阶/土伦阶地层中含有高矫顽力磁性矿物,如赤铁矿和针铁矿,而三冬阶/坎潘阶地层中则主要为 低矫顽力磁性矿物,如磁铁矿。 由于海平面位置在这两个时间段相近,海面变化对沉积物的磁学特征的影响很小。 磁性矿 物种类的变化可能主要是由于海洋沉积环境的变化所引起的。 高矫顽力磁性矿物在赛诺曼阶/土伦阶的出现及其在三冬阶/ 坎潘阶的缺失,表明赛诺曼阶/土伦阶氧化程度可能比三冬阶/坎潘阶更高。 这与深海沉积所记录的赛诺曼阶/土伦阶为缺氧 以及三冬阶/坎潘阶为富氧的特征明显不同。 这说明以江孜地区为代表的深海-半深海环境和以岗巴定日地区为代表的浅海 环境对白垩纪中期气候变化有着不同的响应。 深水和浅水环境的演化在这两个时间段的显著差异表明相应时期的大洋环流 也可能比以往所认识的更复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号