首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿地作为地球上宝贵的自然资源,在维持自然生态平衡、改善生态环境、防治污染等方面具有极其重要的功能。基于Landsat 8 OLI遥感数据,通过对比分析关于湿地和水体的不同提取方法及结果,确定了适合于白洋淀淀区湿地和开阔水体的最佳提取方法,并利用改进的指数方法和谱间关系法分别对淀区湿地和开阔水体进行了定量化提取。鉴于白洋淀淀区湿地主要包括开阔水体和芦苇区两部分,将淀区内湿地和开阔水体进行几何拓扑后,得到淀区内芦苇区的范围。总结出一套适用于白洋淀湿地及其组成部分提取的综合方法,为利用遥感技术在白洋淀淀区内提取湿地及相关信息提供了方法借鉴。  相似文献   

2.
基于多时相Landsat遥感影像,利用适合白洋淀湿地信息提取的综合提取方法提取湿地范围。将湿地范围视为水体淹没区,淹没区的边界线视为对应地表水位高程的等高线,并根据遥感影像、高程控制点等对淀区内受人为影响的局部区域进行校正,插值生成白洋淀湿地底部的数字高程模型(DEM)。选用遥感影像和地面高程控制点对构建的数字高程模型进行验证,遥感影像验证精度在80%以上,地面控制点验证误差在±0.5 m以内的点达到80%。这种由一系列遥感影像提取等高线生成数字高程模型的方法可以弥补白洋淀湿地内数字高程信息不足的缺陷,对于提高白洋淀湿地的水均衡计算和构建湖泊与地下水耦合模型的精度有着重要意义。  相似文献   

3.
A new constructed wetland was built to purify one polluted river in Taiwan, and this study was conducted to evaluate the treatment efficiency of the wetland. Due to the very limitation of available budget, several water quality items, which were stipulated by Taiwan’s Environmental Protection Administration for rivers, in the influent and effluent of wetland were analyzed and evaluated. These items included water temperature, pH, DO, BOD5, TSS, and NH4 +-N. The results showed that the average removal rates of total (unfiltered) BOD5, TSS and NH4 +-N were 36.9 %, 71.8 % and 47.1%, respectively. With the HRT more than 3.4 days, the wetland could treat the polluted river water effectively. Longer HRT in this wetland appeared no obvious improvement on the removal rate of TSS or NH4 +-N. However, BOD removal rate increased while the HRT (Hydraulic Retention Time) increased to about 5 days. In this wetland, the calculated mean first-order reaction rate constant (kT) for BOD5 was 0.15/day with a standard deviation of 0.13/day and for NH4 +-N was 0.24/ day with a standard deviation of 0.18/day. It is also concluded that there is a linear proportional relationship between BOD concentrations in the effluent of wetland and its influent mass loading rates, with the coefficient of determination (R2) of 0.6511. Similar result was seen for NH4 +-N as well, with the coefficient of determination (R2) of 0.5965. TSS removal rate was found to be linearly proportional to its influent mass loading rate, with the coefficient of determination (R2) of 0.4875.  相似文献   

4.
高锰酸盐指数(CODMn)、硝酸根(NO-3)、铵根(NH+4)是判断水体是否受到三氮污染的重要指标。对于测定这三个指标的水样保存方式和时间,地质行业标准和国内外主要国家标准间存在明显差异。地质行业标准规定地下水样品原水室温保存,CODMn和NH+4在3天内测定;NO-3在20天内测定;国家标准和美国标准推荐样品硫酸酸化,避光或冷藏保存,在2~7天内完成CODMn和NO-3和1~7天内完成NH+4测试。为了分析各类标准在样品保存要求上的差异对检测结果的影响,确保检测数据能真实地反映水体污染状况,找寻简便的保存方式,本文在广州地区采集地下水,按照地质行业标准与国家标准进行处理和保存,并在不同时间段对三个指标进行测试。分析验证结果表明:地质行业标准与国家和美国标准关于水样的保存方法均非常可靠。地质行业标准主要针对静态地下水,保存方法相对宽松;国家标准和美国标准适用范围除了地下水,还包括动态的地表水和废水,采样对象成分更为复杂,更不稳定,更容易受外界影响发生变化,故保存条件高于地质标准。在广州地区,采用原水室温避光保存水样,CODMn、NH+4保存时间可为5天,NO-3保存时间可为30天;采用酸化水室温保存水样,CODMn、NO-3和NH+4保存时间可长达30天。这两种方式均比地质行业标准和国家标准推荐的有效时间长,且原水和酸化水室温保存方式相对于冷藏保存方式更为方便。本文提出,如果采集的水样能方便、快速送达实验室,可采用原水保存;如果不能在短时间内送达实验室检测,可采用硫酸酸化保存。  相似文献   

5.
Taihu Basin is one of the most developed and industrialized regions in China. In the last two decades, rapid development of economy as well as an increase in population has resulted in an increase of pollutants produced and discharged into rivers and lakes. Much more attention has been paid on the serious water pollution problems due to high frequency of algal blooming. The dataset, obtained during the period 2001–2002 from the Water Resources Protection Bureau of the Taihu Basin, consisted of eight physicochemical variables surveyed monthly at 22 sampling sites in the Taihu Basin, China. Principal component analysis (PCA) and cluster analysis (CA) were used to identify the characteristics of the surface water quality in the studied area. The temporal and spatial variations of water quality were also evaluated by using the fuzzy synthetic evaluation (FSE) method. PCA extracted the first two principal components (PCs), explaining 86.18% of the total variance of the raw data. Especially, PC1 (73.72%) had strong positive correlation with DO, and was negatively associated with CODMn, COD, BOD, NH4 +–N, TP and TN. PC2 (12.46%) was characterized by pH. CA showed that most sites were highly polluted by industrial and domestic wastewater which contributed significantly to PC1. The sites located in the west of Lake Taihu were influenced by farmland runoff which may contribute to nitrogen pollution of Lake Taihu, whereas the monitoring sites in the eastern of Lake Taihu demonstrated that urban residential subsistence and domestic wastewater are the major contaminants. FSE indicates that there is no obvious variance between 2001 and 2002 among most sites. Only several sites free from point-source pollution appear to exhibit good water quality through the studied period.  相似文献   

6.
Upstream inflow decline and excessive water withdrawal are the major reasons for failure in maintaining ecological functions of wetlands and could lead to wetland drought and degradation. Quantitative evaluation of wetlands drought constitutes the basis for managing and scheduling water resources and guaranteeing biological safety. In the study, we proposed a Palmer wetland drought index (PWDI) based on the water balance model that describes wetland hydrological characteristics linked to its located basin to describe drought-reflected ecological characteristics in lacustrine Baiyangdian Wetland and compared it with Palmer drought severity index (PDSI). The results presented that PWDI is able to reflect the worst drought in history, and the drought is mainly affected by water stored in the wetland, but PDSI is inadequate for evaluating the wetland drought. The PWDI methodology provides a clear, objective approach for describing the intensity of drought and can be readily adapted to characterize drought on an operational basis.  相似文献   

7.
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.  相似文献   

8.
This study compared start-up and steady-state affecting factors of attapulgite composite ceramsite/quartz sand double-layer biofilter (ACC/QSDLBF) and quartz sand single-layer biofilter (QSSLBF) on micropolluted drinking source water treatment. Results showed that the ACC has suitable pore size distribution in the range of 5–850 nm which is conducive to biofiltration. Turbidity removal efficiency of ACC/QSDLBF was a little lower than QSSLBF, but organic matters and ammonia removal efficiencies of ACC/QSDLBF were much higher than QSSLBF due to biodegradation and nitrification by microorganisms colonizing on the ACC. At stable state, the growth of head loss for ACC/QSDLBF was lower than that of QSSLBF. The complete filtration cycle of ACC/QSDLBF was 52 h. The total CODMn removal rate of ACC/QSDLBF was 20.93 %, in which 90 % of removed total CODMn was achieved at the upper 60 cm of ACC filter layer. The removal of CODMn decreased from 35.89 to 13.16 % in ACC/QSDLBF when increasing hydraulic loading from 2 to 16 m/h. After analysis of efficient EBCT in ACC/QSDLBF, optimized hydraulic loading was 12 m/h. These conclusions would be helpful to practical application of ACC as functional material for new construction of waterworks, especially upgrading of existing waterworks treating micropolluted drinking source water.  相似文献   

9.
研究目的】白洋淀为雄安新区核心生态功能区,为支撑白洋淀湿地生态修复与保护,系统开展了全淀区表层沉积物环境质量调查。【研究方法】在白洋淀湿地采集表层沉积物样品484组,查明了白洋淀表层沉积物重金属地球化学特征,并采用地累积指数法、潜在生态风险指数法等多种方法开展了重金属生态风险评价。【研究结果】白洋淀表层沉积物重金属含量普遍偏高于河北省表层土壤重金属含量背景值,府河入淀口及白沟引河入淀口为重金属元素主要富集区,入淀河流输入为白洋淀重金属主要来源;环境地球化学综合评价结果为清洁无污染等级分布面积144.54 km2,占表层沉积物分布总面积的96.68%;各重金属污染程度由重到轻排序为Cd>Cu>Hg>Pb>Zn>Ni>Cr>As,Cd元素污染程度等级以中度和偏中度为主,Cu元素以轻度和清洁为主,其他元素以清洁无污染为主;重金属潜在生态风险以轻度和中度为主,河流入淀口所在淀区重金属潜在生态风险高于其他淀区,潜在生态风险由高到低排序为南刘庄>烧车淀>小白洋淀>王家寨>藻苲淀>捞王淀>池鱼淀>泛鱼淀。【结论】白洋淀表层沉积物环境质量总体较好,南刘庄等局部淀区存在重金属污染潜在生态风险,以Cd元素污染最为突出。创新点:采用地累积指数法、潜在生态风险指数法等多种方法,系统评价白洋淀湿地表层沉积物重金属污染程度和生态风险;重金属地球化学特征分析与主成分分析法相结合,揭示表层沉积物重金属污染主要来源为河流输入。  相似文献   

10.
Because domestic landfill leachate concentrates complex organic pollutants, effective treatment of landfill leachate has gained increasing attention in recent years. In this paper, three-stage physicochemical and biochemical technology for treatment of domestic landfill leachate is presented. Based on an eight-month pilot operation, over 96% of the main pollutants, for example CODCr, BOD5, SS, NH4 +–N, coliform, and chrominance, can be removed, among which the removal efficiency of CODCr was 89.5, 8.6, and 1.7% in stages 1, 2, and 3, respectively, and the removal efficiency of BOD5 was 90.3, 8.3, and 1.4%. In the treatment, the biochemical process played a principal role on the removal of pollutants from the leachate. The treatment efficiency depends on how the syntheses of physicochemical, anaerobic, and hydrolytic procedures pave the way for biochemical treatment. Application of a combined efflux and mixed-flow aerator enhanced the removal efficiency during each procedure.  相似文献   

11.
Stream water from a stream network of 15 small boreal catchments (0.03-67 km2) in northern Sweden was analyzed for unfiltered (total) and filtered (<0.4 μm) concentrations of iron (Fetot and Fe<0.4) and manganese (Mntot and Mn<0.4). The purpose was to investigate the temporal and spatial dynamics of Fe, Mn and dissolved organic carbon (DOC) as influenced by snow melt driven spring floods and landscape properties, in particular the proportion of wetland area. During spring flood, concentrations of Fetot, Fe<0.4, Mntot, Mn<0.4 and DOC increased in streams with forested catchments (<2% wetland area). In catchments with high coverage of wetlands (>30% wetland area) the opposite behavior was observed. The hydrogeochemistry of Fe was highly dependent on wetlands as shown by the strong positive correlation of the Fetot/Altot ratio with wetland coverage (r2 = 0.89, p < 0.001). Furthermore, PCA analysis showed that at base flow Fetot and Fe<0.4 were positively associated with wetlands and DOC, whereas they were not associated during peak flow at spring flood. The temporal variation of Fe was likely related to varying hydrological pathways. At peak discharge Fetot was associated with variables like silt coverage, which highlights the importance of particulates during high discharge events. For Mn there was no significant correlation with wetlands, instead, PCA analysis showed that during spring flood Mn was apparently more dependent on the supply of minerogenic particulates from silt deposits on the stream banks of some of the streams. The influence of minerogenic particulates on the concentration of, in particular, Mn was greatest in the larger, lower gradient streams, characterized by silt deposits in the near-stream zone. In the small forested streams underlain by till, DOC was of greater importance for the observed concentrations, as indicated by the positive correlation of both Fetot and Fe<0.4 with DOC (r2 = 0.77 and r2 = 0.76, p < 0.001) at the smallest headwater forest site. In conclusion, wetland area and DOC were important for Fe concentrations in this boreal stream network, whereas silt deposits strongly influenced Mn concentrations. This study highlights the importance of studying stream water chemistry from a landscape perspective in order to address future environmental issues concerning mobility of Fe, Mn and associated trace metals.  相似文献   

12.
Environmental degradation of wetlands is a major issue in the Yellow River Delta of China. Natural threats and human activities, such as flow cut-off of the Yellow River and droughts, population growth and urbanization, cause wetlands degradation of the delta during the last century, especially in the recent 50?years. Wetland degradation in the Yellow River Delta was investigated and its causation was analyzed. The results indicated that landscape changes of wetlands were mostly tremendous in the whole delta, namely loss of wetland area, surface water and groundwater pollution. Some new degradation control measures based on traditional and scientific knowledge must be used to reverse the wetlands degradation in the Yellow River Delta.  相似文献   

13.
We monitored wetland biomass, decomposition, hydrology, and soil porewater chemistry at the Breton Sound estuary, which receives Mississippi River water from the Caernarvon river diversion structure. The estuary was in the direct path of hurricane Katrina in 2005, which caused a dramatic loss of wetlands in the upper basin. From March 2006 to October 2007, we made duplicate measurements at three distance classes from the diversion structure along the estuarine gradient as well as at a reference area, designated Near (N1&2), Mid (M1&2), Far (F1&2), and Ref (R1&2). Above- and belowground live biomass, porewater nutrients (NOx, NH4, and PO4), salinity, sulfide, and soil Eh were measured every 2 months. Water level was monitored with gauges. Above- and belowground decomposition was measured using the litterbag (both) and cotton strip (belowground only) methods. Analysis of porewater parameters showed that stress factors affecting biomass production (porewater salinity, sulfide, flooding, and redox potential) were generally low to moderate, while measurable porewater nutrient concentrations occurred at all sites. Aboveground end of season live (EOSL) standing crop in October ranged from 423 g/m2 at site M2 to 1,515 at site F1, and was significantly greater at site N1 than at sites N2, M1, or M2. Aboveground EOSL biomass during this study was significantly lower than previously measured in 1999, 2000, and 2001. Peak belowground biomass ranged from 8,315 g/m2 at site R2 to 17,890 g/m2 at site N1, which is among the highest reported in the literature, and there were significant increases throughout the study, suggesting recovery from hurricane Katrina. The decomposition bag data did not indicate any significant differences; however, the cotton strip decomposition rate was significantly lower at the lowest depth. Wetland surface vertical accretion ranged from 0.49 cm/year at N2 to 1.24 cm/year at N1, with site N1 significantly greater than N2, M1, F2, and R1, and site N2 significantly less than all other sites except site R1. These findings show that marsh productivity and stability is related to a number of factors and no one factor can explain the impacts of the hurricanes.  相似文献   

14.
Wetland ecosystems are particularly vulnerable due to flow of nutrients from the surrounding watershed. The study was performed in the Shadegan wetland, a Ramsar-listed wetland located in the south-west of Iran at the head of the Persian Gulf. The wetland plays a significant hydrological and ecological role in the natural functioning of the northern Gulf. The proposed wetland has different water quality characteristics in wet and dry years of study during 1994–2006. To determine the variables, sampling was carried seasonally for each year at six stations. The results indicate that wetland in wet years had high concentrations of nitrate and silicate, leading to oligo–meso eutrophic conditions. Wetland in dry years had high phosphate concentrations, resulting in meso-eutrophic conditions. Forcing functions, such as climatic patterns, water residence time, reduce runoff and increasing density of wastewaters from the surrounding urban, agricultural and industrial area are probably the main variables that explain the observed patterns.  相似文献   

15.
Due to the limitations of hardware sensors for online measurement of the water quality parameters such as 5-day biochemical oxygen demand (BOD5), the recent research efforts have focused on the software sensors for the rapid prediction of such parameters. The main objective in this research is to develop a reduced-order support vector machine (ROSVM) model based on the proper orthogonal decomposition to solve the time-consuming problem of the BOD5 measurements. The performance of the newly developed methodology is tested on the Sefidrood River Basin, Iran. Subsequently, the predicted values of BOD5, resulted from the selected developed ROSVM model, are compared with the results of support vector machine (SVM) model. According to the obtained results, selected ROSVM model seems to be more accurate, showing Person correlation coefficient (R) and root mean square error (RMSE) equal to 0.97 and 6.94, respectively. Further, the investigations based on developed discrepancy ratio (DDR) statistic for selection of the optimum model between the best accurate ROSVM and SVM models are carried out. Results of DDR statistic indicated superior performance of the selected ROSVM model comparing to the SVM technique for online prediction of BOD5 in the Sefidrood River.  相似文献   

16.
The Mississippi River Delta Complex (MRDC) has experienced extensive wetland loss in the last century due, in part, to flood control levees that have isolated the lower Mississippi River and its sediment resource from adjacent wetlands. Reconnecting the River to these wetlands through diversions is being used and proposed on a larger scale for the future, to reduce wetland loss rates. However, some currently operating diversions (e.g., Caernarvon and Davis Pond) have been implicated in causing negative impacts on wetland ecosystem structure and function due to increased nutrient loads in diverted Mississippi River water combined with insufficient sediment delivery. Initial assessments of these concerns were carried out in a greenhouse setting where six nutrient enrichment treatment levels (control, NO3, NH4, PO4, SO4, and Combo [NO3?+?NH4?+?PO4?+?SO4]) were applied with and without sediment addition to 60 marsh sods from a Sagittaria lancifolia-dominated oligohaline wetland at rates simulating the Davis Pond Diversion of the Mississippi River. After 25 months, independent enrichment with N (regardless of form) and sediment was generally beneficial to wetland structure and function, while SO4 enrichment had the opposite effect, regardless of sediment addition. Simultaneous application of N and P (i.e., the Combo treatment level) ameliorated the negative impacts of SO4-loading, but the concurrent application of sediment did not, likely because the loading rate was based on a diversion that was designed to deliver water and not to maximize sediment input. Nonetheless, sediment input is critical to the sustainability of MRDC wetlands experiencing high rates of deterioration. Thus, optimizing future diversions to maximize sediment delivery, along with continued surveillance of negative nutrient effects, are recommended management decisions.  相似文献   

17.
Atmospheric deposition of S in Sweden has decreased by some 80% over the last 15 a, resulting in a general reduction of SO4 concentrations in ground and surface water. This project, however, shows that artificial hydrological alteration in an acid wetland can reverse this trend and increase acidity and SO4 concentrations. The experiment involved the monitoring of two catchments in relatively virgin conditions. In one of the catchments, an experiment with intensive groundwater extraction from the bedrock was carried out. During the experiment, the runoff from the catchment decreased by 50%. Furthermore, the extraction of groundwater resulted in increased seasonal aeration of the centrally located wetland, leading to oxidation of reduced S bound to the soil layers of the wetland. The S changed to solute SO4, with a subsequent SO4 surge. Thus, the experiment resulted in an induced acidification of the wetland and runoff waters. The extraction of groundwater significantly increased the recharge of water from the overburden, glacial till and organic soils to groundwater in the bedrock, which in turn reduced the retention time in the bedrock aquifer. These changes resulted in the chemical signature of the groundwater in the bedrock becoming similar to those of the wetland. The findings revealed deterioration in the water quality in the bedrock due to increased concentrations of dissolved organic C and SO4, as well as a decrease in pH.  相似文献   

18.
The present study investigates the surface water quality of three important tributaries of Jakara Basin, northwestern Nigeria to provide an overview of the relationship and sources of physicochemical and biological parameters. A total of 405 water samples were collected from 27 sampling points and analyzed for 13 parameters: dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), pH, ammonia-nitrogen (NH3NL), dissolved solids (DS), total solids (TS), nitrates (NO3), chloride (Cl), phosphates (PO4), Escherichia coli (E. coli) and fecal coliform bacteria (FCB). Pearson’s product–moment correlation matrix and principal component analysis (PCA) were used to distinguish the main pollution sources in the basin. Four varimax components were extracted from PCA, which explained 84.86, 83.60, and 78.69 % of the variation in the surface water quality for Jakara, Tsakama, and Gama-Kwari Rivers, respectively. Strong positive loading included BOD5, COD, NH3NL, E. coli, and FCB with negative loading on DO attribute to a domestic waste water pollution source. One-way ANOVA revealed that there was no significant difference in the mean of the three water bodies (p?>?0.05). It is therefore recommended that the government should be more effective in controlling the point source of pollution in the area.  相似文献   

19.
Six synoptic samplings of nutrient concentrations of the water column and point-source inputs (rivers, sewage treatment plants) were conducted in the Seekonk-Providence River region of Narragansett Bay. Concentrations of nutrients (NH4 +, NO2 ?+NO3 ?, PO4 ?3, dissolved silicon, particulate N, particulate C) were predicted using a conservative, two-layer box model in order to assess the relative influence of external inputs and internal processes on observed concentrations. Although most nutrients were clearly affected by processes internal to the system, external input and mixing explained most of the variability in and absolute magnitude of observed concentrations, especially for dissolved constituents. In the bay as a whole, two functionally distinct regions can now be identified: the Seekonk-Providence River, where dissolved nutrient concentrations are externally controlled and lower Narragansett Bay where internal processes regulate the behavior of nutrients. A preliminary nitrogen budget suggests that the Seekonk-Providence River exports some 95% of the nitrogen entering the system via point sources and bottom water from upper Narragansett Bay.  相似文献   

20.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号