首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The spatial distribution of 137Cs across the landscape and the processes controlling its redistribution are of interest because (i) 137Cs has been widely used to quantify the movement of soil and sediments and (ii) substantial fallout of 137Cs after the Chernobyl accident has led to contamination of foodstuffs in some places. A high‐resolution airborne geophysical radiometric survey of Northern Ireland has provided an opportunity to study the distribution and possible redistribution of 137Cs. The 137Cs activity (recorded at 1·2 million points) is distributed in a series of bands oriented approximately 160° and 115° clockwise from north. Geostatistical analysis of the data shows a strong, short‐range structure (correlation ranges between 0·6 and 8 km) in 137Cs activity across the vast majority of the region; the spatial distribution shows association with a published, coarse‐scale depositional pattern of 137Cs from Chernobyl. Two indices of land form derived from a digital elevation model, namely compound topographic index and the length–slope factor of the Revised Universal Soil Loss Equation, account for only 3% of the variance in 137Cs activity. In contrast, soil type and land cover in combination (including their interaction) account for 20% of the variance. In areas that received moderate fallout from Chernobyl, soil type alone accounts for a substantial proportion of the spatially correlated 137Cs activity. We attribute this to each soil type having a fairly uniform radiocaesium interception potential that differs from those of other soil types and that this potential controls the vertical migration of 137Cs. Over the granitic Mourne Mountains there is a strong spatial cross‐correlation between 137Cs activity and airborne estimates of soil potassium, suggesting that the latter provides a measure of the soil's radiocaesium interception potential; this is probably dominated by the quantity of the mineral illite. Copyright © 2010 John Wiley & Sons, Ltd. and British Geological Survey  相似文献   

2.
The 137Cs radioactivity of soils was used as a tracer of soil erosion in a catchment in the Netherlands: 143 samples were analysed to map the 137Cs redistribution using geostatistical interpolation methods. Caesium-137 activities on grassland are significantly higher than on arable land. Also, 137Cs activities on waning slopes are higher and activities on steep slopes are lower. The soil erosion estimates, derived from the 137Cs data, are used to validate the USLE erosion model. The recent Chernobyl nuclear accident also contributed to the 137Cs activity. However, the Chernobyl input of 137Cs, with a constant ratio of 1.765:1 to 134Cs, cannot be used as a tracer of soil erosion. Because of the rapid decay of 134Cs, we will not be possible to separate the sources of 137Cs in the near future in areas significantly influenced by Chernobyl fallout and in these areas 137Cs can no longer be used as a soil erosion tracer.  相似文献   

3.
Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of 137Cs inventory and depth‐profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, northeastern Australia; a 143 000 km2 semi‐arid river system. Caesium‐137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of 137Cs concentration from each floodplain site and a reference location were recorded. The areal density of 137Cs at reference locations ranged from 13 to 978 Bq m–2 (0–1367 Bq m–2 at the 95% confidence interval), and the mean value ± 2 (standard error of the mean) was 436 ± 264 Bq m–2, similar to published data from other Southern Hemisphere locations. Floodplain inventories ranged from 68 to 1142 Bq m–2 (0–1692 Bq m–2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth‐profiles of 137Cs concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from 137Cs data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0 to 15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low 137Cs fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed 137Cs. In this low‐fallout environment, detailed depth‐profile data are necessary for investigating sedimentation using 137Cs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of this study was to examine the historical change in sedimentation rates in lakes that have been impacted by river regulation and agricultural activities in the Ishikari River floodplain. We dated sediment cores using caesium‐137 (137Cs) dating and tephrochronology, and we estimated sediment sources from 137Cs concentrations in the topsoil of representative land covers. We found that, between 1739 and 1963, the distance between the lake and the main river channel and whether or not the lake was connected to the river affected the sedimentation rates. After 1963, agricultural drainage systems were established in the Ishikari River floodplain. The average sedimentation rate before and after the construction of drainage ditches varied between 1–66 and 87–301 mg cm–2 a–1, respectively. The increase in the sedimentation rate after 1963 was caused by the construction of a number of drainage networks, as well as extensive cultivation activity and/or fragmentation of the swamp buffers surrounding the lakes. The 137Cs activities at the surfaces of the lake as well as the catchment‐derived 137Cs contributions and 137Cs inventory in the lake profiles were used to examine the sediment influx from the various drainage areas after the establishment of the drainage system. Our results indicate that the majority of the lake sediments were derived from cultivated areas, and therefore the catchment‐derived 137Cs contribution in the lakes was strongly correlated with the sedimentation rate. The 137Cs inventory across all of the lake profiles was also significantly greater than the atmospheric fallout. We identified a negative correlation between the 137Cs lake profile inventory and the sedimentation rate. This is because the sediment originating from the drainage areas contained low 137Cs concentrations, which diluted the overall concentration of 137Cs in the lake sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The caesium-137 technique affords both an alternative to conventional measurement methods and an effective quantitative estimate of soil redistribution at the basin scale. Among the available calibration relationships which link the degree of increase or depletion of the 137Cs activity relative to the baseline 137Cs input and sediment yield, the mass balance approach has received increased application for its physical basis. First, the applicability of the refined simplified point-based mass balance (RSPMB) model of Zhang et al. (1999) at the scale of the morphological unit is proposed herein. The 137Cs spatial distribution measured in a small Sicilian basin and the spatial distribution of the sediment yield calculated by a sediment delivery distributed approach are used to estimate values of the two key parameters of the RSPMB model, φ1 and φ2, the fraction of 137Cs fallout incorporated into soil and a particle size correction factor, respectively. Finally, the best procedure for experimental testing of a distributed sediment yield model by using caesium-137 measurements is investigated.  相似文献   

6.
The rate of natural removal of 137Cs from water bodies in Eastern Fennoscandia is evaluated. The half-time T of water purification from global 137Cs in lake–river systems was ~6.5 years and that for river systems was 6.5–10 years. For the 15- and 20-year exposure of 137Cs in watershed soils, its annual input in rivers was 0.021–0.120 and 0.017–0.070% of its reserve. The period of May–December 1986 showed maximal export of 137Cs, i.e., 1.1% of its reserve. 137Cs export into rivers decreased in the region from north to south because of changes in landscape and climate conditions that affect 137Cs migration on watersheds.  相似文献   

7.
The state of radioactive pollution of Lake Ladoga has been studied. The purification half-life of lake water from 90Sr was found to be 21.7 year. The ratio of 90Sr storage in lake water volume to its storage in silts (0?C10 cm layer) was 2: 1. Lake water purification from global 137Cs was slower than that from 137Cs originating from Chernobyl emergency emission because of the chronic supplement of global 137Cs reserve by atmospheric fallouts. The behavior of 90Sr, 137Cs, and 239,240Pu in bed soils was in agreement with the geochemical nature of the elements. By the distribution of 239, 240Pu in bed soils, the sedimentation of substances of non-radiation nature was estimated at 0.3 and 0.5 mm/year at denting and flat relief, respectively.  相似文献   

8.
The deposition record of 137Cs was traced in the SE Black Sea sediments adjacent to the Coruh river mouth in comparison with the earlier studied chronology of 137Cs deposition in front of the Danube delta (NW Black Sea). In both cases, the 137Cs profiles showed two subsurface peaks attributable to maximum fallout of ‘bomb’ and Chernobyl radionuclides. The Coruh profile revealed a larger contribution of ‘bomb’ 137Cs in comparison with the Chernobyl input, suggesting different coverage of NW and SE Black Sea regions with the Chernobyl fallout. The 137Cs-derived dating showed that maximum deposition of particulate bound 137Cs in sediments adjacent to the Coruh river mouth was delayed for 14 yr relative to date of Chernobyl accident, reflecting a buffer effect of the watershed soils. This transit time is 3 times longer than in the Danube catchment area, indicating a difference in retention processes in these mountainous (Coruh) and lowland (Danube) river basins. The 137Cs profile in Coruh sediments showed penetration of 137Cs to much greater depth than would be expected from 137Cs fallout chronology, suggesting the sediment mixing rate of 1.3 cm2 yr−1. This value was used to evaluate deposition chronology of 137Cs, applying the model developed for pulse fallout case. Comparing the measured and modelled data has allowed differentiation of the flood-induced discharge of the 137Cs-containing suspended matter and the slower transit of eroded soil particles from the contaminated catchment areas. The obtained results may be used for the prediction of period when the pollutants, deposited over the river basins, can reach the Black Sea.  相似文献   

9.
137Cs湖泊沉积年代学方法应用的局限——以Crawford湖为例   总被引:17,自引:5,他引:12  
项亮 《湖泊科学》1995,7(4):307-313
^137Cs湖泊沉积年代学方法是测定现代湖泊沉积物沉积年代和沉积速率的重要同位素年代学方法之一。对加拿大Crawford湖采集的沉积孔柱内^137Cs垂直分布的研究发现,该方法给出时的标有明显偏差。比较^210Pb和纹层等年代方法的结果,其1963年时标蓄积峰值所在位置明显移向表层,而作为1954年时标的该核素出现蓄积的层位则远早于该年沉积物蓄积层位。研究还表明,孔柱中较高的间隙水含量、缺少足以吸  相似文献   

10.
238Pu,239Pu and137Cs in rain and dry fallout and90Sr in rain samples were measured at Woods Hole, Massachusetts, from June 1976 through December 1977. The dry fallout was estimated to be about 7.8% of the total deposition of239Pu and137Cs.239Pu/137Cs ratios, almost constant at about 0.011 in rain or dry fallout, February through December 1977, suggested that fractionation between the refractory and volatile radionuclides is insignificant in stratospheric fallout. This supports the idea of regional homogeneity of radionuclide ratios in fallout.  相似文献   

11.
Anthropogenic radionuclides have reached the Hudson estuary as global fallout from nuclear weapons testing and through local releases from commercial nuclear reactors. Significant activities of238Pu and239,240Pu (fallout-derived),134Cs and60Co (reactor-released), and137Cs (derived from both sources), have accumulated in the sediments throughout the estuary, with the primary zone of accumulation near the downstream end of the system in New York harbor. The estuary appears to have trapped nearly all of the239,240Pu delivered as fallout, and consequently, ocean dumping of dredged harbor sediment is currently the primary means for the net transport of these nuclides to coastal waters. In contrast, only 10–30% of the137Cs,134Cs and60Co delivered to the estuary have been retained on the fine particles which accumulate at a rapid rate in the harbor.The primary factors which have governed the distribution of anthropogenic radionuclides in Hudson sediments are: (1) spread of fine particles labeled with both fallout and reactor nuclides throughout the axis of the estuary, (2) differences in timing of the peak fallout years (1962–1964) and years of maximum reactor releases (1971–1972), (3) large variations in sediment accumulation rates, ranging from a few millimeters per year or less to many tens of centimeters per year, (4) appreciable desorption of137Cs and134Cs from particles at higher salinities, and (5) possible enhanced desorption of60Co at higher salinities (relative to134Cs and137Cs) which may be associated with the release of reduced manganese from the harbor sediments.  相似文献   

12.
The assessment of 137Cs concentration in water based on the model of radionuclide absorption by the bottom sediment of a closed water body is applicable to deep-water lakes with slower water circulation (the time of water exchange exceeding 10 years). The low river runoff from such lakes does not determine their water purification from 137Cs because of the predominance of the process of 137Cs sorption by suspension and bottom sediment. The contamination of a deep-water arctic lake with global 137Cs is reconstructed.  相似文献   

13.
From GEOSECS stations, largely, the 1974 distributions of Pu and of137Cs are described in the Pacific Ocean north of about 20°S latitude. Changes in some of these distributions are described from 1978 cruises by the authors.The Pacific exhibited, everywhere, a shallow subsurface layer of Pu-rich water with its concentration maximum at about 465 m in 1974; over a large portion of the central North Pacific a second layer of Pu-labelled water, less concentrated than the shallow layer, lay just above the bottom. Similar features were not observed in the case of137Cs.The inventories of both Pu and137Cs in the water column at most 1974 stations are substantially greater than those to be expected from world-wide fallout alone; these inventory excesses appear to be attributable to close-in fallout, but only if the ratio Pu/137Cs in this source was much higher than in world-wide fallout. The North Pacific mean ratio of the inventories is 2.2 times that observed in world-wide fallout.Resolubilization of Pu both from sinking particles and from sediments explains peculiarities of its depth distributions.There is little evidence for tracer movement by sliding downward along density surfaces;137Cs appears to have moved to depth by downmixing at the edge of the Kuroshio, and then moved horizontally and upward alongσt contours. The shallow Pu-rich layer shows no coordination with density, salinity or O2 isopleths. The deep Pu-rich layer is restricted to a narrow range of O2 concentrations that confirm its origin in the Aleutian Trench and rapid spread southward and laterally. Near-bottom circulation processes have been much more active than here-to-fore described.  相似文献   

14.
Soil sampling design, the number of samples collected and the lateral variation of caesium-137 (137Cs) in uneroded reference locations were extracted from previously published work. The focus was on published work which used 137Cs reference inventory (Bq m−2) for qualitative or quantitative estimation of sediment redistribution (SRD) within the landscape. The objective of this study was to address one of the methodological concerns facing the 137Cs technique—that is, the lack of a rigorous statistical treatment of reference locations. The limited attention paid to the reference location is not justified as ‘true’ estimates of SRD are based on the assumption of an unbiased, independent, random probability sample estimate, commonly the arithmetic mean. Results from the literature survey indicated that only 11% of the reference locations sampled for 137Cs expressly stated that a probability sampling design was used (transect or systematic-aligned grid). The remaining locations were generally sampled using a non-probability based design, more commonly known as haphazard sampling. Of the 75 reference study areas identified only 40 provided enough information to determine the dispersion around the mean, and from this the coefficient of variation (CV) was calculated for all available data. The median CV was 19·3%, with 95% confidence limits of 13·0–23.4%, indicating that approximately 11 random, independent samples would generally be necessary to adequately quantify the reference 137Cs area activity with an allowable error of 10% at 90% confidence. Further analysis indicated that only one-third of the studies sampled a sufficient number of 137Cs reference locations. This value would actually be lower as sampling frameworks were based on non-probability sampling procedures. For 137Cs reference locations it is recommended that a probability sampling design be utilized, preferably the systematic-aligned grid method, and as a minimum first-order estimate about 11 samples should be collected for inventory estimates.  相似文献   

15.
The anthropogenic radionuclide 137Cs has been extensively utilized as a tracer of geomorphic processes in the northern hemisphere since its deposition during atmospheric testing of nuclear devices in the 1950s and 1960s. The distribution of bomb‐fallout 137Cs was measured on a sequence of coastal dune sands and soils at Pinery Provincial Park, on the coast of Lake Huron in southern Ontario, Canada. The depth distribution within the stabilized, developed soils inland reflected the relationship between clay content and the adsorption and immobilization of the radionuclide. However, the influence of soil organic matter, silt‐sized particles and vegetation cycling on the profile distribution could not be discounted. Within the geomorphically dynamic dune sands near the coast, there was a significant activity of 137Cs even though the sands were lacking in clay‐sized particles. Within a buried soil on the inland side of a large active dune blowout, the distribution of 137Cs with depth was useful as a stratigraphic marker of the rates of accumulation of sands at that position. Therefore 137Cs may be a useful alternative to erosion pins, sequential air photos and sediment traps in the monitoring of dune destabilization in coastal environments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The distribution of soil 137Cs in relation to selected soil and landform properties was studied across a 16 ha hillslope hollow in the Hunter valley, New South Wales, Australia. The hillslope was used as grazing for cattle. Caesium-137 was not significantly related to the amount of sand, silt, or clay, the bulk density, the organic matter content, the slope angle or the relative distance downslope. However, 137Cs was significantly related to the thickness of the soil A horizon. Spatial variations in 137Cs were compared with topographic units and a six-element hillslope model, but there was little correspondence. It was thought that the effects of microtopography could have masked potential interrelationships between 137Cs and broader scale landform parameters.  相似文献   

17.
Vertical profiles of the activities of 137Cs and 210Pb were measured on floodplain sediment cores and upland soil cores along the Soda Butte Creek and the Yellowstone River to determine floodplain sedimentation rates. The position of mine tailings from a 1950 impoundment failure was used as a stratigraphic marker to estimate the sedimentation rates and to make comparisons with rates provided by radionuclide‐based methods. Mass accumulation (sedimentation) rates calculated from the position of the mine tailings ranged from 0·00 to 0·17 g cm?2 yr?1 and were in good agreement with sedimentation rates calculated from the inventories of 137Cs and 210Pb. Sedimentation rates calculated from the position of the 137Cs peak generally overestimated the sedimentation rates, probably because of increased downward migration of 137Cs caused by the low pH of water moving through the mine tailings or the high permeability of floodplain sediments relative to upland reference soils. This study demonstrates that the 137Cs and 210Pb inventory methods for determining sedimentation rates can be applied to an alpine floodplain where sedimentation events are episodic and where orographic effects on precipitation generate strong downstream gradients in the delivery of atmospheric radionuclides. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
There is increasing recognition that 137Cs data remain one of the few sources of spatially distributed information concerning soil erosion. However, many of the conversion models that have been used to convert 137Cs data into soil redistribution rates failed to account for some of the key factors affecting the redistribution of 137Cs in agricultural landscapes. The conversion model presented in this paper aims to overcome some of the limitations associated with existing models and therefore to provide more realistic estimates of soil erosion rates on agricultural land. The conversion model aims at coupling soil redistribution processes directly with 137Cs redistribution. Emphasis is placed on the spatial representation of soil redistribution processes and the adequate simulation of tillage processes. The benefits of the presented model arise from the two‐dimensional spatial integration of mass balance models with soil erosion models. No a priori assumptions about the intensity of any soil redistribution process are necessary and the level of agreement between observed and simulated 137Cs inventories enables us to evaluate the performance of the model. The spatial implementation and the use of fuzzy parameter sets also allow us to assess the uncertainties associated with soil erosion estimates. It was shown that an adequate simulation of tillage processes is necessary and that simplified tillage models may lead to erroneous estimates of soil redistribution. The model was successfully applied to a study site in the Belgian Loam Belt and the results indicated that tillage is the dominant process. Furthermore, the uncertainties associated with the estimation of water erosion rates were much higher than those associated with tillage, especially for depositional areas. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
An estimated 3.5 ± 0.7 × 1015 Bq of 137Cs is thought to have been discharged into the ocean following the melt down at Fukushima Dai-ichi Nuclear Power Plant (F1NPP). While efforts have been made to monitor seafloor radiation levels, the sampling techniques used cannot capture the continuous distribution of radionuclides. In this work, we apply in situ measurement techniques using a towed gamma ray spectrometer to map the continuous distribution of 137Cs on the seafloor within 20 km of the F1NPP. The results reveal the existence of local 137Cs anomalies, with levels of 137Cs an order of magnitude higher than the surrounding seafloors. The sizes of the anomalies mapped in this work range from a few meters to a few hundreds of meters in length, and it is demonstrated that the distribution of these anomalies is strongly influenced by meter scale features of the terrain.  相似文献   

20.
Use of fallout radionuclides as indicators of erosion processes   总被引:1,自引:0,他引:1  
The different depth penetration characteristics of 137Cs, 7Be and 210Pb excess in undisturbed soils can be used to identify erosion processes by analysis of sediments derived from surface erosion. Caesium-137 concentrations (half-life 30 years) typically decrease to half the surface value at between 30 and 50 mm. Beryllium-7 (half-life 53 days) has half-penetration depths of between 0.7 and 10 mm, whereas 210Pb excess (half-life 20.2 years) has half-penetration depths between 10 and 30 mm. Experiments designed to determine the applicability of these depth penetration characteristics to soil erosion studies are reported. Surface runoff was artificially generated at two locations in a grazed paddock using a rainfall simulator. Suspended sediment was extracted from runoff and analysed for natural and artificial gamma emitting radio-nuclides. Suspended sediment derived from sheet flow contained initially high values of 137Cs, 7Be and 210Pb excess. As the experiment continued 137Cs concentrations remained high, but 7Be and 210Pb excess value decreased with time. This is interpreted as indicating a change from sheet dominated erosion to rill dominated erosion. During a second experiment artificial rain was allowed to fall onto an eroded gully wall. The derived suspended sediment contained no detectable 137Cs, 7Be or 210Pb excess. Overland flow from above the gully wall was then allowed to run down the gully face and mix with the water falling directly onto the gully wall. There was no detectable change in the radionuclide signature, showing that the gully wall was the predominant source of sediment. This was tested independently by mass balance and 226Ra to 232Th ratios. The good correlation between 210Pb excess and 7Be at this site suggests that the differential technique described here may be applicable over time-scales longer than are possible with 7Be. It may therefore be practical to examine catchment erosion history through analysis of 210Pb excess and 137Cs in sediment cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号