首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
The ISIS-2 scanning auroral photometer surveyed the polar region during three successive passes on 18 December 1971, at times when Kp values were still high due to an intense magnetic storm which began on 16 December. Two very bright (IBC III) auroral substorm patterns were seen to correspond to rather weak magnetic substorms (about 300 γ in magnitude). A large spiral auroral pattern, with intensity of the order of 100 kR and a size of about 1300 km, was present in the polar cap; it gradually decreased in size and intensity during the interval 0200–0600 UT. A region of enhanced 3914 emission was present in the noon sector of the auroral oval between 0200 and 0400. The presence of the diffuse auroral belt is also evident at all local times during this period, extending down to about 61° corrected geomagnetic latitude in the midnight sector.  相似文献   

2.
Effects of solar wind parameters on the development of substorms during the events of southward interplanetary magnetic field (IMF) lasting more than one hour were studied. Analysis on 175 events with average magnitude of the southward component of IMF larger than l·5γ as observed in July–December 1965 lead to the following results: (1) The total auroral electrojet (AEJ) current associated with the southward IMF event is approximately proportional to the time integral of the magnitude of the southward component. (2) The azimuthal component of IMF also affects the AEJ development. AEJ about twice as intense were observed when IMF was directed duskward than when IMF was directed dawnward. (3) AEJ intensity is strongly affected by the solar wind velocity during the southward IMF events, the intensity being approximately proportional to the square of the velocity. (4) No indication was found that the angle between the Sun-Earth line and the Earth's dipole axis plays any role on the development of substorms if effects of the solar wind parameters as described above are eliminated.  相似文献   

3.
From observations of two-ribbon solar flares, we present a new line of evidence that magnetic reconnection is of key importance in magnetospheric substorms. We infer that in substorms reconnection of closed field lines in the near-Earth thinned plasma sheet both initiates and is driven by the overall MHD instability that drives the tailward expulsion of the reconnected closed field (0 loops). The general basis for this inference is the longstanding notion that two-ribbon flares and substorms are essentially similar phenomena, driven by similar processes. We give an array of observed similarities that substantiate this view. More specifically, our inference for substorms is drawn from observations of filament eruptions in two-ribbon flares, from which we conclude that the heart of the overall instability consists of reconnection and eruption of the closed magnetic field in and around the filament. We propose that essentially the same overall instability operates in substorms. Our point is not that the magnetic field configuration or the microphysics in substorms is identical to that in two-ribbon flares, but that the overall instability results from essentially the same combination of reconnection and eruption of closed magnetic field.  相似文献   

4.
It is shown that by monitoring time variations of the solar wind-magnetosphere energy coupling function ?(t) upstream of the solar wind, one should be able to predict fairly accurately the growth and decay of individual magnetospheric substorms and storms.  相似文献   

5.
Plasma data from the Apollo XIV Charged Particle Lunar Environment Experiment (CPLEE) are presented to show that contrary to previously published analyses the plasma sheet does not extend to the lunar orbit with a thickness of 8 RH. Two electron spectral types are observed: (1) low energy photoelectrons with no statistically significant medium and high energy fluxes, and (2) double peaked medium and high energy electrons. The second type is observed either coincident with auroral substorms or at the center of the tail during quiet times. These spectra are one to several orders of magnitude less intense than plasma sheet spectra measured near 20 RE.  相似文献   

6.
Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of neutral sheet theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE.  相似文献   

7.
The behavior of midday auroras during auroral substorms is examined on the basis of all-sky photographs taken from the South Pole station. It is indicated that the model of auroral substorms constructed by Starkov and Feldstein (1967) needs some modifications.  相似文献   

8.
The time-sequence of polar magnetic substorms is discussed to clarify some controversies on the magnetospheric substorm model including the growth phase. The main purpose of the analyses is to examine magnetic variations in the polar cap and in low latitudes. The onset of the expansion phase is confirmed to be reasonably defined by a vector change of polar-cap magnetic disturbance, a sharp intensification of the auroral electrojet disturbance and the beginning of positive ΔH disturbance in midlatitudes near midnight. It is shown that the growth phase signatures so far proposed are consistent when the onset of the expansion phase is identified from the above mentioned features.  相似文献   

9.
On the basis of the 5.46 min IMF data and the 3-min data on magnetic field at polar cap station Alert, various characteristics of the interplanetary magnetic field and polar cap magnetic activity are examined for the purpose of separating the substorm precursors. It is shown that the most suitable characteristics toward this aim are the following: 1.σ(BZ)-index, defined as the 15-min sum of values of the southward (BZS) components of the IMF with an account of the negative gradient of the IMF vertical (BZ) component; and 2.PC(BZ)-index, defined as the 15-min sum of values of the polar cap magnetic disturbances, concerned with southward component BZS, with an account of variability of these disturbances. Every intense peak in the substorm activity is preceded by a corresponding increase in σ(BZ) and PC(BZ) indices. Thus, the conclusion is made that moderate and large substorms have a growth phase and as a result such substorms may be forecasted using the above indices.  相似文献   

10.
Several evidences for the directly driven aspect of magnetospheric substorms are presented by reinterpreting what have been thought to be supporting evidences for the unloading process. Further, it is stressed that some of our confusions in substorm studies could be resolved by understanding that the magnetospheric substorm is primarily a directly driven phenomenon, but has a variety of internal processes. A method is suggested tto identify the directly driven and the unloading components. It is also demonstrated that the magnetosphere is intrinsically a non-linear system and that a quantitative study of magnetospheric substorms is not possible without taking into account this non-linearity.  相似文献   

11.
Magnetospheric substorms and solar flares seem to follow a pattern where a sudden transition from a slow passive evolution to a fast active evolution occurs. This concept which has proven useful for constructing a theory of the onset of magnetospheric substorms is tentatively applied to current sheets which may be relevant to flares.  相似文献   

12.
P. B. Zuo  F. S. Wei  X. S. Feng  F. Yang 《Solar physics》2007,242(1-2):167-185
The magnetic cloud boundary layer (BL) is a disturbance structure that is located between the magnetic cloud and the ambient solar wind. In this study, we statistically analyze the characteristics of the magnetic field B z component (in GSM coordinates) inside the magnetic cloud boundary layers as well as the relationship between the magnetic cloud boundary layers and the magnetospheric substorms based on 35 typical BLs observed by Wind from 1995 to 2006. It is found that the magnetic field B z components are more turbulent inside the BLs than those inside the adjacent sheath regions and the magnetic clouds. The substorm onsets are identified by the auroral breakups that are the most reliable substorm indicators by using the Polar UVI image data. The UVI data are available only for 17 BLs. The statistical analysis indicated that 9 of the 17 events triggered the substorms when BLs crossed the magnetosphere and that the southward field in the adjacent sheath region is a necessary condition for these triggering events. In addition, the SF-type BLs, which are named by their features of the B z components inside the BLs and adjacent sheath regions, can easily trigger the substorms during their passage of the magnetosphere. SF-type BLs are characterized by sustained strong southward magnetic fields persisting for at least 30 minutes in the adjacent sheath regions and at least one change in the polarity of the B z component inside the BL. In this study, 7 out of 8 such SF-type BL events triggered the substorm expansion phase, suggesting that the SF-type BLs are another important interplanetary disturbance source of substorms.  相似文献   

13.
It has long been believed that solar flares result from a sudden conversion of magnetic energy stored prior to their onset. However, it is difficult to prove such an idea without knowing both the rate of energy input and the rate of energy output in the flare region. In spite of the fact that a similar mechanism has long been contemplated, magnetospheric substorms are found to be directly driven by an enhanced dynamo process. The results suggest also that the presence of magnetic energy in the magnetotail does not mean that it can be consumed for substorms. Implications of this finding for solar flares are discussed.  相似文献   

14.
In an earlier paper the latitudinal and longitudinal structure of ionospheric current flow during a sequence of magnetospheric substorms was presented (McDiarmid and Harris, 1976). In the present paper the relationships between the electrojets, the radio aurora observed at 48 MHz and the all-sky camera-recorded visual aurora are presented for the same substorm sequence. The previously described morphology of radio aurora during substorms is confirmed and the observed relationships can be explained.  相似文献   

15.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

16.
Changes in the configuration of the geomagnetic tail are known to play a fundamental role in magnetospheric substorms. Observations with the UCLA magnetometer on the eccentric orbiter OGO-5 indicate that the most pronounced changes in the midnight meridian occur in the cusp between 8 and 11 Re. In order to organize the observations it is necessary to separate effects on the tail due to the solar wind magnetic field and effects due to substorms. Provided there are no changes in the solar wind there are two distinct phases of a substorm in the near tail: a growth phase and an expansion phase. During each phase the observations depend on the location of the satellite relative to the plasma sheet boundaries. Far behind the Earth is the pure tail region which consists of the lobe and the plasma sheet. In the lobe the field magnitude is characteristically enhanced relative to the dipole. Closer to the Earth is a region of transition. The field magnitude is close to that of the dipole but its orientation is distorted forming a cusp-like field line. Near the Earth is a region of depressed field. Here the field magnitude is much less than that of the dipole, but its orientation is similar. The growth phase of a substorm appears to be the direct consequence of the onset of a southward solar wind magnetic field. In the pure tail region the lobe field begins to increase in magnitude and the plasma sheet thins. The transition region moves earthward and the field lines become more tail-like as the field magnitude increases. In the inner region of depressed field, the field magnitude decreases rapidly. The onset of the expansion phase appears to be a process internal to the magnetosphere and independent of the solar wind. In the depressed field region there is a rapid, turbulent increase in field magnitude. In the transition region there is a sudden decrease in the field magnitude and a return to dipolar orientation. In the tail region the plasma sheet expands rapidly with the field becoming quite dipolar, decreasing slowly in the lobe of the tail.  相似文献   

17.
Further results of a laboratory magnetic field line reconnection experiment are presented. In particular, it is found that the reconnection rate can be slowed by placing solid obstacles to impede the outflow of plasma from an x-type magnetic neutral point. Without the obstacles the reconnection rate is faster and more impulsive. The fastest reconnection event has strong similarities to solar flares and geomagnetic substorms. It is suggested that more stationary features of solar activity such as prominences may be the result of reconnection slowed by obstacles such as the photosphere.  相似文献   

18.
This paper presents a brief summary of an extensive correlative study of ATS-5 particle and magnetic field data with all-sky photographs from Great Whale River which is near the ‘foot’ of the field lines passing through the ATS-5 satellite. In particular, an effort is made to identify specific particle features with specific auroral displays during substorms, such as a westward travelling surge, poleward expansive motion and drifting patches. Some of the important findings are (i) in early evening hours, the first encounter of ATS-5 with hot plasma is associated with the equatorward shift of the diffuse aurora, but not necessarily with westward travelling surges (even when the satellite is embedded in the plasma sheet.) (ii) In the midnight sector, an injection corresponds very well to the initial brightening of an auroral arc. (iii) Specific features of morning sector auroras (for example, drifting patches) are difficult to correlate with specific particle features (gross features, but not specific).Comparing these results with particle data from low-latitude polar orbiting satellites, it is concluded that the plasma sheet near the earthward edge (consisting of plasmas injected during earlier substorms) is little affected during substorms.  相似文献   

19.
Sixty auroral absorption substorms (30 in IQSY and 30 in IASY) have been analysed on the basis of riometer-recordings taken at some 40 stations distributed over auroral, subauroral and polar cap latitudes. Synoptic maps showing isoabsorption curves have been produced every 15 min (sometimes every 5 min) of the 60 substorms; 705 maps altogether.Some of the results of the analysis are as follows.Initiation of a substorm most frequently occurs near midnight but may occur anywhere between early evening and late morning. The time of onset becomes earlier and the latitude of onset moves equatorward as the level of magnetic activity increases.The longitude expansion velocities are contained in the range 0.7–7 km/sec except for a few extreme values which exceed 20 km/sec.The auroral absorption eastward expansion velocity is smaller than the corresponding velocity of the boundary of the region of activation of the visual aurora after break up by a factor 14?12.The expansion velocity corresponds, in general, to drift velocities of electrons of energies in the range 50–300 keV but, for the extreme speeds, electron energies around 1 MeV are needed.Expansion of the absorption in the westward direction was seen in about half of the substorms studied. In about half of these, expansion along the auroral oval could be indentified, but in almost all of these cases some expansion in the auroral zone latitudes was also seen. In about an equal number of events, expansion was confined primarily to the auroral zone.The velocity of the westward expansion was about 1 km/sec along the auroral oval (i.e. approximately equal with the speed of the westward travelling surge) but about 2 km/sec along the auroral zone.The meridional expansion velocities found agree well with those measured for visual aurora (? 1 km/sec).The variability of the behaviour of different substorms is very large. To illuminate this the following may be mentioned, in addition to what has been stated above about the statistics.Although the absorption maximum practically always moves eastward from the initiation region, exceptions have been seen in which the maximum started moving west and in a later phase went eastward.Sometimes the absorption maximum stays in the injection area or very close to it, although in most cases it moves eastward into the dayside. In extreme eases it has been found to move more than 270° in the eastward direction.There are auroral absorption substorms in which injection seems to take place in more than one area simultaneously.The observations cannot all be understood in terms of gradient and curvature drift of electrons from a small area of injection only. A broad intrusion of hot plasma from the tail into the inner magnetosphere seems to be needed.No strong dependence of particle precipitation on the illumination of the upper ionosphere by sunlight was seen. The results do, therefore, not support the hypothesis of Brice and Lucas (1971) that cold plasma density increases, originating in the ionosphere, significantly increase the precipitation rate of energetic trapped particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号