首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The orbit of Tansei 3rocket(1977-12B) has been determined at 47 epochs between 1 October 1977 and 19 March 1979 using over 1700 observations and the RAE orbit refinement program PROP6. The rate of change of the inclination was examined to evaluate values of the atmospheric rotation rate, Λ rev day?1. Analysis yielded the value Λ = 1.1 ± 0.05 at height 315 ± 30 km, average conditions; or alternatively Λ = 1.1 ± 0.1 at height 347 ± 12 km, slight winter bias and Λ = 1.07 ± 0.1 at height 270 ± 18 km, average conditions, supplying further evidence of a decrease in rotation rates from the 1960s to the 1970s.Analysis of the inclination at 15th-order resonance yielded the lumped harmonic values
109C0,115 = 13.4 ± 6.2, 109S0,115 = 0.7 ± 13.3
for inclination 65.485°.  相似文献   

2.
The orbit of Cosmos 837 rocket (1976-62E) has been determined at 36 epochs between January and September 1978, using the RAE orbit refinement program PROP 6 with about 3000 observations. The inclination was 62.7° and the eccentricity 0.039. The orbital accuracy achieved was between 30m and 150m, both radial and crosstrack. The orbit was near 29:2 resonance in 1978 (exact resonance occurred on 14 May) and the values of orbital inclination obtained have been analysed to derive lumped 29th-order geopotential harmonic coefficients, namely:
109C0,229 = ? 10 ± 15
and
109S0,229 = ?76 ± 12
. These will be used in future, when enough results at different inclinations have accumulated, to determine individual coefficients of order 29. The values of lumped harmonics obtained from analysis of the values of eccentricity were not well defined, because of the high correlations between them and the errors in removing the very large perturbation (31 km) due to odd zonal harmonics.  相似文献   

3.
The orbit of the satellite 1967-104B has been analysed as it passed through 29:2 resonance with the Earth's gravitational field between January 1977 and September 1978. From the changes in inclination and eccentricity the following lumped 29th-order geopotential harmonic coefficients were obtained: 109C?290.2 = 4.1 ± 0.8, 109S?290.2 = 10.3 ± 2.4, 109C?291.1 = ? 160 ± 19, 109S?291.1 = 79 ± 10, 109C?29?1.3 = 38 ± 14, 109S?29?1.3 = 19 ± 5. These values have been compared with existing comprehensive geopotential models: the best agreement is with the model of Rapp (1981).  相似文献   

4.
The influence of aerodynamic drag and the geopotential on the motion of the satellite 1964-52B is considered. A model of the atmosphere is adopted that allows for oblateness, and in which the density behaviour approximates to the observed diurnal variation. A differential equation governing the variation of the orbital inclination combining the effects of air drag with those of the Earth's gravitational field is given.The 310 observed values of inclination are modified by the removal of perturbations due to luni-solar attraction, solid Earth and ocean tides, solar radiation pressure, low-order long-periodic tesseral harmonic perturbations and changes due to precession. The method of removal of these effects is given in some detail.The variations in inclination due to drag are analysed to give four values of the average atmospheric rotation rate at heights of 296–476 km at latitude 0–54°. These values are as expected from previous analyses.The analysis of the change in inclination due to solar radiation pressure shows that this rapidly tumbling cylindrical satellite may be considered as equivalent to a spherical satellite of a given area-to-mass ratio.Analysis of the inclination near 15:1 resonance with the geopotential yields values of lumped geopotential harmonics of order 15 and 30, namely, 109C?0.115 = ?31.2 ± 2.3 109S?0.115 = ?4.4 ± 3.2 109C?0.230 = 39.0 ± 10.7 109S?0.230 = 51.8 ± 10.0  相似文献   

5.
The influence of aerodynamic drag and the geopotential on the motion of the satellite 1964-52B is considered. A model of the atmosphere is adopted that allows for oblateness, and in which the density behaviour approximates to the observed diurnal variation. A differential equation governing the variation of the eccentricity, e, combining the effects of air drag with those of the Earth's gravitational field is given. This is solved numerically using as initial conditions 310 computed orbits of 1964-52B.The observed values of eccentricity are modified by the removal of perturbations due to luni-solar attraction, solid Earth and ocean tides, solar radiation pressure and low-order long-periodic tesseral harmonic perturbations. The method of removal of these effects is given in some detail. The behaviour of the orbital eccentricity predicted by the numerical solution is compared with the modified observed eccentricity to obtain values of atmospheric parameters at heights between 310 and 430 km. The daytime maximum of air density is found to be at 14.5 hours local time. Analysis of the eccentricity near 15th order resonance with the geopotential yielded values of four lumped geopotential harmonics of order 15, namely: 109C1,015 = ?78.8 ± 7.0, 109S1,015 = ?69.4 ± 5.3, 109C?1,215 = ?41.6 ± 3.5109S?1,215 = ?26.1 ± 8.9, at inclination 98.68°.  相似文献   

6.
Ariel 1, the first international satellite, was launched on 26 April 1962, into an orbit inclined at 53.85° to the equator, with an initial perigee height near 390 km. On 8 May 1973 the orbit passed through 15th-order resonance and has been determined, with the RAE orbit refinement program PROP, at eight epochs between February and August 1973 using 500 observations.The orbital inclinations during the time of 15th-order resonance, as given by these eight orbits and 31 U.S. Navy orbits, were fitted with a theoretical curve using the THROE computer program, the best fit giving 109C?15 = ?370 ± 14 and 109S15 = ?114 ± 31.The values of eccentricity were also successfully fitted using THROE, and the results are discussed.  相似文献   

7.
The cross-section for dissociative photoionization of hydrogen by 584 Å radiation has been measured, yielding a value of 5 × 10?20 cm2. The process can be explained as a transition from the X1 Σg+ ground state to a continuum level of the X2 Σg+ ionized state of H2 The branching ratio for proton (H+) vs molecular ion (H2+) production at this energy is 8 × 10?3. This process is quite likely an important source of protons in the Jovian ionosphere near altitudes where peak ionization rates are found.  相似文献   

8.
T.E. Cravens  A.E.S. Green 《Icarus》1978,33(3):612-623
The intensities of radiation from the inner comas of comets which are composed primarily of water and carbon monoxide have been calculated. Only “airglow” emissions initiated by the absorption of extreme ultraviolet radiation have been considered. The photoionizations of H2O, CO, CO2, and N2 are the most important emission sources, although photoelectron excitation is also considered. Among the emission features for which intensities were calculated are H2O+ (A?2A1?X?2B1), CO+ (first negative), CO (fourth positive), CO (Cameron), CO2+ (B?2?u?X?2IIg), N2 (Vegard-Kaplan), N2+ (first negative), and OI (1304 Å). In the inner coma (collision region) these airglow mechanisms are shown to be possible competitors with the usually assumed resonance scattering and flourescence excitation mechanisms which are appropriate for the outer coma and tail.  相似文献   

9.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

10.
Recent laboratory studies show that the O(1S) quantum yield, f(1S), from O2+ dissociative recombination varies considerably with the degree r of vibrational excitation. However, the suggestion that the high values for f(1S) deduced from airglow and auroral observations can be explained by invoking vibrational excitation, creates a number of problems. Firstly, the rapid vibrational deactivation of O2+ ions by collisions with O atoms will keep r too low to account for the magnitude of f(1S); secondly, r varies considerably from one atmospheric source to another but its relative values (which should be reliable) do not co-vary with those of f(1S); thirdly, because r increases markedly above the peak of the X5577 A? dissociative recombination layer, the fits which theorists have obtained to the observed volume emission rate profiles would have to be regarded as fortuitious. It is tentatively suggested that f(1S) is higher in the airglow and aurora than in the laboratory plasma studied by Zipf (1980) because of the electron temperature dependence of the O(1S) specific recombination coefficient for O2+(v' ? 3) ions.The repulsive 1Σu[1D + 1s] state of O2 does not provide a suitable channel for the dissociative recombination. A possible alternative is the bound 3Πu[5S + 3s] state with predissociation to the repulsive 3Πu[3P + 1s] state.  相似文献   

11.
Spherical harmonics are the natural parameters for the Earth's gravity field as sensed by orbiting satellites, but problems of resolution arise because the spectrum of effects is narrow and unique to each orbit. Comprehensive gravity models now contain many hundreds of thousands of observations from more than thirty different near-Earth artificial satellites. With refinements in tracking systems, newer data is capable of sensing the spherical harmonics of the field experienced by these satellites to very high degree and order. For example, altimeter, laser and satellite-tracking-satellite systems contain gravitational information well above present levels of satellite gravity field recovery (l = 20), but significant aliasing results because the orbital parameters are too restricted compared to the large number of spherical harmonics.It is shown however that the unique spectrum of information for each satellite contained within a comprehensive spherical harmonic model can be represented by simple gravitational constraint equations (lumped harmonics). All such constraints are harmonic in the argument of perigee (ω) with constants determinable directly from tracking data or reconstituted from the comprehensive solution:
(C1, S1) = (Co, So) + Σi = 1 (CCi, SCi) cos i ω + (CSi, SSi) sin i ω
. The constants are simple linear combinations of the geopotential harmonics. Through these lumped harmonics any satellite gravity field can be decomposed and then uniformly extended to any degree or tailored to a given orbit without reintegration of the trajectory and variational equations. They also make possible the inclusion of information into the field from special deep resonance passages, long arc zonal analyses, and satellites unique to other models. Numerous examples of the derivation, combination, extension and tailoring of the harmonics are presented. The importance of using data spanning an apsidal period is emphasized.  相似文献   

12.
The calculated radiative lifetime of the metastable ion is 6.4 × 10?3s. Used in conjunction with the results of measurements by Erdman, Espy and Zipf this sets 1.3 × 10?18 cm2 as the upper limit to the cross section for the formation of N+(5S) in e - N2 collisions at 100eV which leaves the possibility that the process is responsible for the λ2145A? feature in auroras only just open. The cross section for the formation of N+(5S) in e — N collisions is large. However for this process to lead to the observed intensity of λ2145A? relative to λ3914A? the N:N2 abundance ratio would have to be as high as 1.6 × 10?2.  相似文献   

13.
Simultaneous measurements of the 6300 Å airglow intensity, the electron density profile, and F-region ion temperatures and vertical ion velocities taken at the Arecibo Observatory in March 1971 are utilized in the height integrated continuity equation to extract the number of photons'of 6300 Å emitted per recombination. After accounting for quenching of O(1D) and the electrons lost via NO+ recombination, the efficiency of O(1D) production by the dissociative recombination of O2+ is determined to be 0.6 ± 0.2 including cascading from the O(1S) state. The uncertainty includes both random measurement errors and estimates of possible systematic errors.  相似文献   

14.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

15.
Measurements of N2+ and supporting data made on the Atmosphere Explorer-C satellite in the ionosphere are used to study the charge exchange process
O+(2D)+N2kN+2+O
The equality k = (5 ± 1.7) × 10?10cm3s?1. This value lies close to the lower limit of experimental uncertainty of the rate coefficient determined in the laboratory. We have also investigated atomic oxygen quenching of O+(2D) and find that the rate coefficient is 2 × 10?11 cm3s?1 to within approximately a factor of two.  相似文献   

16.
The Earth's gravitational potential is usually expressed as an infinite series of tesseral harmonics, and it is possible to evaluate “lumped harmonics” of a particular order m by analyses of resonant satellite orbits—orbits with tracks over the Earth that repeat after m revolutions. In this paper we review results on 30th-order harmonics from analyses of 15th-order resonance, and results on 29th- and 31st-order harmonics from 29:2 and 31:2 resonance.The values available for 30th-order lumped harmonics of even degree are numerous enough to allow a solution for individual coefficients of degree up to 40. The best-determined coefficients are those of degree 30, namely
109C30,30= ?1.2±1.1 109S30,30= 9.6±1.3
The standard deviations here are equivalent to 1 cm in geoid height.For the 29th- and 31st-order harmonics, and for the 30th-order harmonics of odd degree, there are not enough values to determine individual coefficients, but the lumped values from particular satellites can be used for “resonance testing” of gravity field models, particularly the Goddard Earth Model 10B (up to degree 36) and 10C (for degree greater than 36). The results of applying these tests are mixed. GEM 10B/C emerges well for order 30, with s.d. about 3×10?9; for order 31, the GEM 10B values are probably good but the GEM 10C values are probably not; for order 29, the test is indecisive.  相似文献   

17.
The potential ? of the electric field at high latitudes has been obtained by solving numerically the second order differential equation in spherical coordinates:
?12(rσH?θ)θ+1rH?λ)λ+1rP?λ)θ?(σP?θ)λ=1r(rψθ)θ+1r2ψλλ
, where θ is colatitude, λ is longitude, σH and σP are the height-integrated Hall and Perdersen ionospheric conductivities, r = sinθ, and ψ is the current function. The boundary condition is ? = 0 on the geomagnetic parallel θ = 34°. Values of ψ are determined from geomagnetic field variations at the Earth's surface from geomagnetic field variations at the Earth's surface for various conditions in interplanetary space. σP and σH are taken to vary with season, local time, tilt of the geomagnetic dipole axis (UT), and intensity of corpuscular precipitation (the model proposed by Wallis and Budzinski, 1981). The model distributions of ?M and EM = -▽?m so obtained are compared with observational results. The feasibility has been demonstrated of interpreting the statistical results and individual measurement data in terms of a unified dynamic model of ionospheric electric fields. The model makes allowance for the changes of electromagnetic “weather” in interplanetary space.  相似文献   

18.
Laboratory data shows that the reaction of protons with methane proceeds at thermal ion energies to give both CH3+ and CH4+ ions in the ratio CH3+CH4+ = 1.5 ± 0.3. The overall rate constant for the reaction is 3.8 ± 0.3 × 10?9 cm3/sec. This reaction may lead to the formation of hydrocarbon ions in the lower ionosphere of Jupiter, and the significance of this process for formation of hydrocarbons and HCN in the atmosphere of Jupiter is discussed.  相似文献   

19.
When a satellite orbit decaying slowly under the action of air drag experiences 15th-order resonance with the Earth's gravitational field, so that the ground track repeats after 15 rev, the orbital eccentricity may suffer appreciable changes due to perturbations from the gravitational harmonics of order 15 and even degree (16, 18, 20…). In this paper the changes in eccentricity at resonance for six satellites in near-circular orbits at inclinations between 56 and 90° have been analysed to derive 11 pairs of equations linking the harmonic coefficients of order 15 and (even) degree l, Cl,15andSl,15 in the usual notation. These equations (together with eight constraint equations) are solved to give:
  相似文献   

20.
Recent laboratory measurements of the deactivation rate constants for O(1S) have suggested that the dominant production mechanism for the green line in the nightglow is a two-step process. A similar mechanism involving energy transfer from an excited state of molecular oxygen is considered as a potential source of the OI (5577 Å) emission in the aurora. It is shown that the mechanism, O2 + e → O21 + e O21 + O → O2 + O(1S), is consistent with auroral observations; the intermediate excited state has been tentatively identified as the O2(c1?u) state. For the proposed energy transfer mechanism to be the primary source of the auroral green line, the peak electron impact cross-section for O21 production must be approximately 2 × 10?17 cm2.  相似文献   

l109Cl,15109Sl,15
16?13.7 ± 1.3?18.5 ± 2.7
18?42.3 ± 1.8?34.7 ± 3.4
2010.5 ± 3.129.8 ± 5.2
22?8.6 ± 3.8?20.2 ± 7.4
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号