共查询到20条相似文献,搜索用时 11 毫秒
1.
Rocks dredged and drilled from both the rift mountains of the Mid-Atlantic Ridge (Minia seamount) and from the northern wall and the median ridge of the adjacent Gibbs fracture zone near 53°N include tholeiites, serpentinized and mylonitized peridoties, and gabbroic rock.The tholeiites include: (1) pyroxene-tholeiites, commonly without phenocrysts and containing less than 15% Al2O3; (2) plagioclase-tholeiites with small (1.1–2.2 mm length) plagioclase phenocrysts and an Al2O3 content varying between 14–17%; and (3) high-alumina plagioclase tholeiites with large (> 2.5 mm length) plagioclase phenocrysts and more than 17% Al2O3. The apparently transitional differences among the three groups support the possibility that differentiation by crystal fractionation of the high-alumina plagioclase-tholeiites gave rise to the plagioclase-tholeiites with less Al2O3 and smaller phenocrysts and to the pyroxene-tholeiites. A small portion of the basalts ampled show effects of low-grade metamorphism. The peridotites may represent evidence of intrusive emplacement of peridotitic material beneath the tholeiitic rocks. 相似文献
2.
《Deep Sea Research Part I: Oceanographic Research Papers》2000,47(11):2111-2139
Heat fluxes are estimated across transatlantic sections made at 4°30′S and 7°30′N in January–March 1993, following Hall and Bryden (1982. Deep-Sea Research 29, 339–359). Particular care is given to the computation of Ekman volume and heat fluxes, which are assessed both (a) from the windstress data for the period of the cruise and (b) from the comparison between geostrophic and Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) velocities. In contrast with previous studies, the two estimates for Ekman fluxes do not converge for either section: (a) (11.5±0.5 Sv; 1.01±0.05 PW) across 7°30′N and (−9.3±1.2 Sv; −0.85±0.12 PW) across 4°30′S when windstress data at the date of the hydrographic stations are used; (b) (6.3±1.1 Sv; 0.56±0.09 PW) across 7°30′N and (−3.4±3.0 Sv; −0.35±0.24 PW) across 4°30′N when the ageostrophic transport above the thermocline is used. The divergence would have been even greater at 4°30′S if the strong ageostrophic signal beneath the thermocline, which brings a transport of (8.4 Sv; 0.82 PW), had been considered. The corresponding total meridional heat fluxes are: (a) 1.40±0.16 PW and (b) 0.95±0.20 PW across 7°30′N, (a) 1.05±0.12 PW and (b) 1.67±0.14 PW (2.39±0.14 PW when the subthermocline ageostrophic transport is taken into account) across 4°30′S.The estimates based on windstress data are compared with the results from an inverse model (Lux and Mercier, 1999) to show the importance of the heat flux due to the deviation of the local depth-averaged potential temperature from its average over the section, which is neglected in the Hall and Bryden (1982. Deep-Sea Research 29, 339–359) method but is not negligible in our computation in which we do not isolate the transport of the western boundary current east of the 200 m isobath; this corrective flux amounts here to −0.19 PW across 7°30′N and 0.33 PW across 4°30′S.The seasonal variability of the meridional heat flux across 7°30′N is studied through the hydrographic data collected during the ETAMBOT 1–2 cruises, which repeated the 7°30′N section west of 35°W in September 1995 and April 1996. When the section is completed east of 35°W with CITHER 1 data and when windstress data are used for the computation of the Ekman transport, the estimates for the meridional heat fluxes are 0.20±0.14 PW in September 1995 and 1.69±0.27 PW in April 1996. The estimates fit well with results from numerical models. 相似文献
3.
《Deep Sea Research Part II: Topical Studies in Oceanography》2009,56(15):964-976
We discuss nitrous oxide (N2O) and methane (CH4) distributions in 49 vertical profiles covering the upper ∼300 m of the water column along two ∼13,500 km transects between ∼50°N and ∼52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined “plume” of exceptionally high N2O concentrations coincident with very low levels of CH4, located between ∼23.5°N and ∼23.5°S; this feature reflects the upwelling of deep waters containing N2O derived from nitrification, as identified by an analysis of N2O, apparent oxygen utilization (AOU) and NO3−, and presumably depleted in CH4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to ∼42% of the Atlantic Ocean surface area were in the range 0.40–0.68 Tg N2O yr−1 and 0.81–1.43 Tg CH4 yr−1. Based on contemporary estimates of the global ocean source strengths of atmospheric N2O and CH4, the Atlantic Ocean could account for ∼6–15% and 4–13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH4 than previously thought. 相似文献
4.
A study of Sea Beam bathymetry and SeaMARC II side-scan sonar allows us to make quantitative measures of the contribution of faulting to the creation of abyssal hill topography on the East Pacific Rise (EPR) 9°15 N–9°50 N. We conclude that fault locations and throws can be confidently determined with just Sea Beam and SeaMARC II based on a number of in situ observations made from the ALVIN submersible. A compilation of 1026 fault scarp locations and scarp height measurements shows systematic variations both parallel and perpendicular to the ridge axis. Outward-facing fault scarps (facing away from the ridge axis), begin to develop within 2 km of the ridge and reach their final average height of 60 m at 5–7 km. Beyond these distances, outward-dipping faults appear to be locked, although there is some indication of continued lengthening of outward-facing fault scarps out to the edge of the survey area. Inward-facing fault scarps (facing toward the ridge axis), initiate 2 km off axis and increase in height and length out to the edge of our data at 30 km, where the average height of inward fault scarps is 60–70 m and the length is 30 km. Continued slip on inward faults at a greater distance off axis is probable, but based on fault lengths, 80% of the lengthening of inward fault scarps occurs within 30 km of the axis (>95% for outward faults). Along-strike propagation and linkage of these faults are common. Outward-dipping faults accommodate more apparent horizontal strain than inward ones within 10 km of the ridge. The net horizontal extension due to faulting at greater distances is estimated as 4.2–4.3%, and inward and outward faults contribute comparably. Both inward- and outward-facing fault scarps increase in height from north to south in our study area in the direction of decreasing inferred magma supply. Average fault spacing is 2 km for both inward-dipping and outward-dipping faults. The azimuths of fault scarps document the direction of ridge spreading, but they are sensitive to local changes in least compressive stress direction near discontinuities. Both the ridge trend and fault scarp azimuths show a clockwise change in trend of 3–5° from 9°50 N to 9°15 N approaching the 9° N overlapping spreading center. 相似文献
5.
Kojiro Ando Masaki Kawabe Daigo Yanagimoto Shinzou Fujio 《Journal of Oceanography》2013,69(2):159-174
To clarify the global deep-water circulation in the northwest Pacific, we conducted current observations with seven moorings at 40°N east of Japan from May 2007 to October 2008, together with hydrographic observations. By analyzing the data, while taking into consideration that the deep circulation has a northward component in this region and carries low-silica, high-dissolved-oxygen water, we clarified that the deep circulation flows within the region between 144°30′ and 146°10′E at 40°N on and east of the eastern slope of the Japan Trench with marked variability; the deep circulation flows partly on the eastern slope of the trench and mainly to the east during P1 (10 May–24 November 2007), is confined to the eastern slope of the trench during P2 (25 November 2007–20 May 2008), and flows on and to the immediate east of the eastern slope of the trench during P3 (21 May–15 October 2008). Previous studies have identified two branches of the deep circulation at lower latitudes in the western North Pacific; one flows off the western trenches and the other detours near the Shatsky Rise. It was thus concluded that the eastern branch flows westward at 38°N and then northward to the east of the trench, finally joining the western branch around 40°N during P1 and P3, whereas the eastern branch passes westward south of 38°N, joins the western branch around 38°N, and flows northward on the eastern slope of the trench during P2. 相似文献
6.
Production parameters of surface phytoplankton were measured along three transects: La Manche-Cape Town (I); Cape Town-54°S (II); 0°-49°W (along 54°S) (III). The Canary upwelling waters were most productive along transect I, where the surface chlorophyll a (Chl 0) and the surface primary production (PP 0) were as high as 4.3 mg/m3 and 173 mg C/m3 per day, respectively. Mosaic patterns in the distribution of these parameters were recorded in the northeastern regions of the South Subtropical Anticyclonic Gyre (Chl 0 = 0.03–0.35 mg/m3; PP 0 = 1.6–12.6 mg C/m3 per day). Along transect II, the average twofold southward increase in Chl 0 (from 0.2 to 0.4 mg/m3) and the concurrent decline of the phytoplankton assimilation activity ( AN 0) resulted in deviations from typical latitudinal changes inPP 0. At most sites, PP 0 values varied between 6 and 15 mg C/m3 per day. Negligible changes in Chl 0 (0.36–0.85 mg/m3), PP 0 (8–19 mg C/m3 per day), and AN 0 (0.7–1.6 mg C/mg chl a per hour) were registered for the oceanic waters along transect III. Along all the transects, PP 0 depended on Chl 0 to a greater extent than AN 0. The values of the latter parameter were largely determined by the water temperature and showed a slight correlation with the insolation. Along transect II, the integrated primary production (PP int) and the layer-integrated chlorophyll a in the upper 200 m (Chl 0–200) generally varied from 180 to 360 mg C/m2 per day and from 30 to 70 mg/m2, respectively. In the Polar Front region, an increase in Chl 0–200, PP int, Chl 0, and PP 0 up to respective values of 190 mg/m2, 520 mg C/m2 per day, 1.2 mg/m3, and 32 mg C/m3 per day was observed. A comparison of the water column (0–100 m) stability with the vertical distribution of the primary production and chlorophyll content along transect II implies that the thick (>100 m) upper mixed layer (UML) formed in response to the strong water cooling and wind forcing was largely responsible for the limited primary production in the Subantarctic and Antarctic regions. The large UML thickness resulted in an intense removal of plant cells from the photosynthetic layer and light starvation of a significant (up to 60%) part of the phytoplankton community. 相似文献
7.
8.
In December–January of 2010 the spatial distribution of the phytoplankton production characteristics was studied along transects
in the vicinity of the Greenwich meridian (I) and in the Drake Passage (II). On transect I, the surface chlorophyll a concentration and primary production varied from 0.11 up to 3.57 mg/m3 and from 4.38 up to 37.47 mgC/m3 per day, respectively. The chlorophyll a in the photosynthetic layer and the integrated primary production varied from 10.7 up to 66.1 mg/m2 and from 83 to 646 mgC/m2 per day, respectively. On transect II in the surface layer, the chlorophyll a concentration changed within the range of 0.09–1.02 mg/m3 and the primary production ranged from 2.08 to 9.49 mgC/m3. The integrated values ranged from 6.32 to 38.29 mg/m2 and from 41 to 221 mgC/m2 per day, respectively. The moderate means of themaximum quantum yield (F
v/F
m) on transects I and II (0.41 and 0.35, respectively) testify to the low activity of the phytoplankton’s photosynthetic apparatus.
The studied water areas in the Southern Ocean differed both in the phytoplankton biomass expressed in the chlorophyll a concentration values and in the conditions of the primary production formation. 相似文献
9.
1IntroductionThe oceanic Rossby waves play an importantrole in the large-scale oceanic circulations.In the o-ceans baroclinic Rossby waves have surface manifes-tations of just a fewcentimeters,and wavelengths atmid-latitudes of hundreds to thousands of ki… 相似文献
10.
A method is developed to quantify the relationship between the ridge axial topography and gravity and the spreading rate along the Mid‐Atlantic Ridge between 22 and 38°N. This relationship reflects the variations of slope of the best‐fit line of topography and gravity spectra with the spreading rate of the ridge segments. The slope of the best‐fit line of topography spectrum becomes smaller as the spreading rate increases, indicating that with increasing spreading rate more energy of the ridge axial topography shifts into high‐frequency bands. The spreading rate dependence of the ridge axial topography may be explained by an anomalous thermal structure beneath the ridge. No significant correlation was found between the slope of the best‐fit line of gravity spectrum and the spreading rate in this region. The lack of spreading rate dependence of the ridge axial gravity may be attributable to the isostatic compensation of the spreading center. 相似文献
11.
On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130°E. A linear two-layer model is employed to explain the mechanism. It is found that the first-mode long baroclinic Rossby waves at 20°N in the northwest Pacific propagate westward in the form of free waves at a speed of about 10.3 cm/s. This confirms that the observed low frequency variabilities appear as baroclinic Rossby waves. It further shows that these low frequency variabilities around 20°N in the northwest Pacific can potentially be predicted with a lead up to 900 d. 相似文献
12.
《Deep Sea Research Part II: Topical Studies in Oceanography》1999,46(5):867-884
The third in a series of cruises designed to establish the present-day concentrations of trace elements and synthetic organic compounds in major water masses of the ocean, the 1996 Intergovernmental Oceanographic Commission Contaminant Baseline Survey occupied six vertical profile stations in the subtropical and tropical Atlantic. Underway surface samples also were acquired in the transects between these stations. This paper uses the temperature, salinity, oxygen, nutrient, and chlorophyll results from the cruise to set the hydrographic background for the other papers in this special volume. Major features sampled during the surface transect include the Brazil Current, the South Equatorial Current, and the offshore Amazon Plume. Utilizing the above parameters to identify water masses, we observed Antarctic Bottom Water (AABW) that ranged from a relatively undiluted form at 33°S (Station 10) to a highly attenuated form at 8°N (Station 6). Similarly, North Atlantic Deep Water (NADW) was obtained in various mixing stages along its flow path, and samples of NADW and AABW exchanging through the Romanche Fracture Zone to the eastern Atlantic basins were also taken. In addition to these deep water masses, representative samples of Antarctic Intermediate Water and Circumpolar Deep Water were acquired. Besides standard hydrography, these data also were used to verify the sampling integrity of the trace metal-clean, Go Flo bottles deployed on a Kevlar hydrographic cable. 相似文献
13.
《Deep Sea Research Part I: Oceanographic Research Papers》2005,52(6):1043-1070
Previous work has shown that methane anomalies frequently occur within the rift valley of the Mid-Atlantic Ridge (MAR). The plumes appear confined within the high, steep walls of the valley, and it is not known whether methane may escape to the open ocean outside. In order to investigate this question, the concentration and 13C/12C ratio of methane together with CCl3F concentration were measured in the northeastern Atlantic including the rift valley near 50°N. This segment contained methane plumes centered several 100 m above the valley floor with δ13C values mostly between –15‰ and –10‰. A limited number of helium isotope measurements showed that δ3He increased to 17% at the bottom of the valley, which suggests the helium and methane sources may be spatially separated. In the eastern Atlantic away from the ridge (48°N, 20°W), the methane concentration decreased monotonically from the surface to the bottom, but the methane δ13C exhibited a mid-water maximum of about –25‰. The bottom water methane contained a significantly lower δ13C of about –36‰. Thus, it appears that isotopically heavy methane escapes from the MAR into North Atlantic Deep Water (NADW) that contacts the ridge crest while circulating to the east. The formation of NADW supplies isotopically light methane that dilutes the input of heavy carbon from the ridge. We employed a time-dependent box model to calculate the extent of isotope dilution and thereby the flux of MAR methane into the NADW circulation. The degree of methane oxidation, which affects the 13C/12C of methane through kinetic isotope fractionation, was estimated by comparing methane and CFC-11 model results with observations. The model calculations indicate a MAR methane source of about 0.06×10−9 mol L−1 yr−1 to waters at the depth of the ridge crest. Assuming this extends to a 500 m thick layer over half of the entire Atlantic, the amount of methane escaping from the MAR to the open ocean is estimated to be about 1×109 mol yr−1. The total production of methane within the rift valley is likely much greater than the flux from the valley to the outside because of local oxidation. This implies that serpentinization of ultramafic rocks supports much of methane production in the rift valley because the amount expected from basalt degassing in association with mantle helium (<0.6×109 mol CH4 yr−1) is less than even the net amount escaping from the valley. The model results also indicate the methane specific oxidation rate is about 0.05 yr−1 in open waters of the northern Atlantic. 相似文献
14.
Oceanology - The aim of this study is to compare satellite measurements of the total cloudiness with visual observations of clouds. This makes it possible to compare “different... 相似文献
15.
《Deep Sea Research Part I: Oceanographic Research Papers》2001,48(3):605-638
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW. 相似文献
16.
Roger Searle 《Marine Geology》1977,25(4):299-320
A detailed survey of a 1°-square of sea floor 100 miles northeast of the Azores has revealed the presence of scarps over 30 km long striking generally 120°, transverse to the regional topographic and magnetic lineations. They are not associated with a major fracture zone. Sedimentation in the area appears to have been by a mixture of pelagic and turbidity-current processes, with a Miocene increase in sedimentation rate probably indicating the subaerial emergence of the Azores Archipelago. Magnetic anomalies were identified along a number of profiles between the survey area and the Mid-Atlantic Ridge crest, and indicate a short period of increased spreading rate from about 12-3 m.y. ago. 相似文献
17.
Jean-Christophe Sempéré Leo Kristjansson Hans Schouten James R. Heirtzler G. Leonard Johnson 《Marine Geophysical Researches》1990,12(3):215-234
Immediately southwest of Iceland, the Reykjanes Ridge consists of a series ofen échelon, elongate ridges superposed on an elevated, smooth plateau. We have interpreted a detailed magnetic study of the portion of the Reykjanes Ridge between 63°00N and 63°40N on the Icelandic insular shelf. Because the seafloor is very shallow in our survey area (100–500 m), the surface magnetic survey is equivalent to a high-sensitivity, nearbottom experiment using a deep-towed magnetometer. We have performed two-dimensional inversions of the magnetic data along profiles perpendicular to the volcanic ridges. The inversions, which yield the magnetization distribution responsible for the observed magnetic field, allow us to locate the zones of most recent volcanism and to measure spreading rates accurately. We estimate the average half spreading rate over the last 0.72 m.y. to have been 10 mm/yr within the survey area. The two-dimensional inversions allow us also to measure polarity transition widths, which provide an indirect measure of the width of the zone of crustal accretion. We find a mean transition width on the order of 4.5±1.6 km. The observed range of transition widths (2 to 8.4 km) and their mean value are characteristic of slow-spreading centers, where the locus of crustal accretion may be prone to lateral shifts depending on the availability of magmatic sources. These results suggest that, despite the unique volcanotectonic setting of the Reykjanes Ridge, the scale at which crustal accretion occurs along it may be similar to that at which it occurs along other slow-spreading centers. The polarity transition width measurements suggest a zone of crustal accretion 4–9 km wide. This value is consistent with the observed width of volcanic systems of the Reykjanes Peninsula. The magnetization amplitudes inferred from our inversions are in general agreement with NRM intensity values of dredge samples measured by De Boer (1975) and ourselves. Our thermomagnetic measurements do not support the hypothesis that the low amplitude of magnetic anomalies near Iceland is the result of a high oxidation state of the basalts. We suggest that the observed reduction in magnetic anomaly amplitude toward Iceland may be the result of an increase in the size of pillows and other igneous units. 相似文献
18.
Sea Beam bathymetry and SeaMARC II side-scan sonar data are used to constrain the width of the zone of active faulting (plate boundary zone) to be 90 km (0.8 Ma) wide along the East Pacific Rise 8° 30N – 10° 00N. Fault scarps, identified on the basis of contoured, shaded relief and slope intensity maps of bathymetry, are measured. These scarp measurements, used in conjunction with data from a separate near-axis study, show that both inward- and outward-facing fault scarps increase in height away from the ridge axis, reaching average heights of 100 m at 0.8±0.2 Ma, 45±10 km from the ridge axis. Beyond this distance, there is no significant increase in scarp height. Earlier studies had suggested that the width of the zone of active faulting for outward-dipping faults might be significantly narrower than for inward-dipping faults. A lower crustal decoupling zone between brittle crust and strong upper mantle is predicted to exist out to 20–200 km from the ridge based on previously published lithospheric models. Such a decoupling zone may explain why outward-dipping faults continue to be active as far off-axis as inward-dipping faults. If the width of the zone of active faulting is controlled by the width of a lower crustal decoupling zone, our observations predict an 90 km wide decoupling zone in the lower oceanic crust at this location. 相似文献
19.
20.
In the seawater and sediments of the ocean, there exist huge quantities of bacteria whose living activities cause various chemical reaction processes. It is demonstrated that microorganisms play a fundamental role on chemical changes of the sediments and diageneses. Over the last twenty years, great interest has been increased about the role of deep-sea bacteria in the ferromanganese sedimentary process. Much work has been done on this aspect in the Atlantic Ocean, the Baltic Sea and the Pacific O- 相似文献