首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of \(\varDelta \hbox {UT1}\) results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several \(\upmu \)as. Moreover, the CRF is influenced by up to \(50~\upmu \)as if the station coordinates and EOP are dominated by the satellite techniques.  相似文献   

2.
The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the \(Z\) component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the \(Z\) geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.  相似文献   

3.
This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree $4\times 4$ coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993–2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008–2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 $50\times 50$ series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.  相似文献   

4.
Reducing the draconitic errors in GNSS geodetic products   总被引:2,自引:2,他引:0  
Systematic errors at harmonics of the GPS draconitic year have been found in diverse GPS-derived geodetic products like the geocenter $Z$ -component, station coordinates, $Y$ -pole rate and orbits (i.e. orbit overlaps). The GPS draconitic year is the repeat period of the GPS constellation w.r.t. the Sun which is about 351 days. Different error sources have been proposed which could generate these spurious signals at the draconitic harmonics. In this study, we focus on one of these error sources, namely the radiation pressure orbit modeling deficiencies. For this purpose, three GPS+GLONASS solutions of 8 years (2004–2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models. The models employed in the solutions are: (1) the CODE (5-parameter) radiation pressure model widely used within the International GNSS Service community, (2) the adjustable box-wing model for SRP impacting GPS (and GLONASS) satellites, and (3) the adjustable box-wing model upgraded to use non-nominal yaw attitude, specially for satellites in eclipse seasons. When comparing the first solution with the third one we achieved the following in the GNSS geodetic products. Orbits: the draconitic errors in the orbit overlaps are reduced for the GPS satellites in all the harmonics on average 46, 38 and 57 % for the radial, along-track and cross-track components, while for GLONASS satellites they are mainly reduced in the cross-track component by 39 %. Geocenter $Z$ -component: all the odd draconitic harmonics found when the CODE model is used show a very important reduction (almost disappearing with a 92 % average reduction) with the new radiation pressure models. Earth orientation parameters: the draconitic errors are reduced for the $X$ -pole rate and especially for the $Y$ -pole rate by 24 and 50 % respectively. Station coordinates: all the draconitic harmonics (except the 2nd harmonic in the North component) are reduced in the North, East and Height components, with average reductions of 41, 39 and 35 % respectively. This shows, that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies.  相似文献   

5.
接收机自主完好性监测(receiver autonomous integrity monitoring,RAIM)是终端用户高可靠导航定位的保障,低轨卫星的发展为完好性监测带来新的机遇,然而不同低轨星座增强下的终端RAIM性能可能会存在显著差异。基于高轨道倾角(80颗)、中轨道倾角(120颗)和混合轨道倾角(168颗)3种典型的低轨星座,系统评估了低轨卫星增强下的北斗卫星导航系统(BeiDou navigation satellite system,BDS)RAIM可用性及故障检测效果。仿真计算结果表明:对于高纬区域,高轨道倾角增强下的RAIM可用性效果最好,而在中、低纬区域,中轨道倾角星座增强下的RAIM可用性效果最优;在全球范围内,高轨道倾角、中轨道倾角和混合轨道倾角星座增强下非精密进近阶段的RAIM可用性较BDS分别提升30.5%、29.0%和41.0%。由此可知,由不同轨道倾角组成的混合星座可较好地弥补可视卫星在空间覆盖上的缺陷,其全球RAIM可用性增强效果最优,增强下的RAIM可检测到的最小伪距偏差较之前平均减小33.3 m。  相似文献   

6.
Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year\(^{-1}\), and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 \(\upmu \)as year\(^{-1 }\)in \(y_{\mathrm{pol }}\) when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 \(\upmu \)as in the terrestrial pole coordinates.  相似文献   

7.
EOP预报误差对导航卫星轨道预报的影响分析   总被引:1,自引:0,他引:1  
导航卫星轨道预报是利用精密定轨结果在惯性系下进行轨道外推,再将外推得到的惯性系轨道转换为地固系轨道,然后生成卫星星历数据。由于坐标系转换时使用的是带有误差的地球定向参数(EOP:Earth Orientation Parameters)预报值,转换结果会产生误差,进而影响轨道预报结果的精度。分析了EOP快速预报产品公报A的预报精度,研究了参数预报误差对轨道预报精度的影响。结果表明,对于利用GPS精密星历外推模拟得到的卫星轨道而言,EOP预报1天引起的轨道预报误差大致分布在0.232±0.183m,参数预报7天引起的轨道预报误差大致分布在0.438±0.356m。  相似文献   

8.
利用低轨道地球卫星(LEO)进行导航增强首先需要设计低轨星座,在进行星座构型设计时,星座的稳定性及综合成本是需要考虑的两个重要因素,本文提出了顾及星座稳定性及综合成本进行低轨导航星座优化设计的方法. 首先,利用遗传算法对铱星星座进行了优化,优化后的铱星星座与未优化前星座相比较,全球可见卫星数均值由2.3颗增至2.9颗,可见卫星数标准差由2.3降至0.7,综合成本因子由5.3降至4.5,证明了本方法的有效性. 然后以Walker星座作为基本构型,在保证低轨混合星座稳定性的基础上,顾及导航性能和综合成本,利用遗传算法进行了混合星座的优化. 将优化后的低轨混合星座与北斗星座进行了组合,组合后的星座与北斗星座相比较,全球可见卫星数均值由6.9颗增至9.3颗,可见卫星数标准差由1.1降至0.4.   相似文献   

9.
阳凡林 《测绘科学》2003,28(2):26-28
首先描述卫星覆盖的理论以及卫星星下点在地面上的轨迹规律,然后根据导航星座的特点,通过对星座基本参数特点的讨论,并在参考GPS和GLONASS星座的基础上,确定了导航星座的构成。最后,在理论上证明了最小覆盖性的条件,随着模拟实际数据进行了验证。  相似文献   

10.
激光在天空对地观测中的应用   总被引:1,自引:0,他引:1  
刘基余 《测绘工程》2001,10(2):15-19
1960年7月世界上第一台激光器问世后,激光测距迅速兴起,不管是地面激光测距,还是激光测卫和激光测月,都为大地测量学的发展作出了重大贡献;特别是激光测卫测月成果,为我们深化对地球动态效应的认识,揭示地球的奥秘,提供了许多重要的科学数据,本文综析了值得注视的下列新近发展。.在IGEX-98国际大联测中,求定GLONASS卫星的激光轨道与微波轨道之差;.评定PRN05/06号GPS卫星星历的精度;.检核Topex/Poseidon海洋测高卫星用GPS定轨的测量误差,.用机载激光测深系统测量海水的浓度;.用EOS-ALT星载激光测距/测高系统测量地球动态参数。  相似文献   

11.
Summary A model for the anisotropic reflection force acting on Ajisai is presented which includes the variable reflectivity coefficient and the force in the direction perpendicular to the incident light. This model significantly reduces the along-track orbit errors of Ajisai and smoothes the spike-like variation in the estimated drag coefficients from analysis of Ajisai laser ranging data. The model produces 17% smaller range residual RMS values in a one-year arc analysis of 1993 data, and a smaller residual RMS for a short-arc analysis in mid-year, the period from May to August, 1993.on leave from Hydrographic Department of Japan  相似文献   

12.
Orbit and clock analysis of Compass GEO and IGSO satellites   总被引:11,自引:5,他引:6  
China is currently focussing on the establishment of its own global navigation satellite system called Compass or BeiDou. At present, the Compass constellation provides four usable satellites in geostationary Earth orbit (GEO) and five satellites in inclined geosynchronous orbit (IGSO). Based on a network of six Compass-capable receivers, orbit and clock parameters of these satellites were determined. The orbit consistency is on the 1–2 dm level for the IGSO satellites and on the several decimeter level for the GEO satellites. These values could be confirmed by an independent validation with satellite laser ranging. All Compass clocks show a similar performance but have a slightly lower stability compared to Galileo and the latest generation of GPS satellites. A Compass-only precise point positioning based on the products derived from the six-receiver network provides an accuracy of several centimeters compared to the GPS-only results.  相似文献   

13.
The BeiDou satellite navigation system (BDS) is different from other global navigation satellite systems (GNSSs) because of its special constellation, which consists of satellites in geostationary earth orbit, inclined geosynchronous earth orbit (IGSO), and medium earth orbit (MEO). Compared to MEO satellites, the observations of IGSO satellites cover only a small range of nadir angles. Therefore, the estimation of phase center offsets (PCOs) suffers from high correlation with other estimation parameters. We have estimated the phase center offsets for BeiDou IGSO and MEO satellites with a direct PCO parameters model, and constraints are applied to cope with the correlation between the PCOs and other parameters. Validation shows that the estimated PCO parameters could be used to improve the accuracy of orbit and clock offset overlaps. Compared with the Multi-GNSS Experiment antenna phase center correction model, the average improvements of the proposed method for along-track, cross-track, and radial components are 19 mm (31%), 5 mm (14%), and 2 mm (15%) for MEO satellites, and 13 mm (17%), 12 mm (21%), and 5 mm (19%) for IGSO satellites. For clock offset overlaps, average improvements of standard deviation and root mean square (RMS) are 0.03 ns (20%) and 0.03 ns (12%), respectively. The RMS of precise coordinates in the BDS-only positioning was also improved significantly with a level of 24 mm (30%) in the up-direction. Finally, the overall uncertainty of the estimated results is discussed.  相似文献   

14.
The source position time-series for many of the frequently observed radio sources in the NASA geodetic very long baseline interferometry (VLBI) program show systematic linear and non-linear variations of as much as 0.5 mas (milli-arc-seconds) to 1.0 mas, due mainly to source structure changes. In standard terrestrial reference frame (TRF) geodetic solutions, it is a common practice to only estimate a global source position for each source over the entire history of VLBI observing sessions. If apparent source position variations are not modeled, they produce corresponding systematic variations in estimated Earth orientation parameters (EOPs) at the level of 0.02–0.04 mas in nutation and 0.01–0.02 mas in polar motion. We examine the stability of position time-series of the 107 radio sources in the current NASA geodetic source catalog since these sources have relatively dense observing histories from which it is possible to detect systematic variations. We consider different strategies for handling source instabilities where we (1) estimate the positions of unstable sources for each session they are observed, or (2) estimate spline parameters or rate parameters for sources chosen to fit the specific variation seen in the position-time series. We found that some strategies improve VLBI EOP accuracy by reducing the biases and weighted root mean square differences between measurements from independent VLBI networks operating simultaneously. We discuss the problem of identifying frequently observed unstable sources and how to identify new sources to replace these unstable sources in the NASA VLBI geodetic source catalog.  相似文献   

15.
受限于区域监测站及地球静止轨道(geosynchronous earth orbit,GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度.使用一种由24颗L...  相似文献   

16.
针对北斗导航卫星系统首创的GEO+IGSO+MEO混合星座设计,本文研究了根据不同星座,采取不同约束条件和数据处理策略的北斗卫星精密定轨方法,提出了一种针对北斗系统混合星座的分层约束精密定轨方案.该方案首先将北斗卫星分为非GEO(IGSO/MEO)和GEO两部分进行解算,利用GPS解算的公共参数对北斗IGSO/MEO精...  相似文献   

17.
以高轨卫星天基定轨原理作为理论基础,设计了一种在MATLAB仿真软件环境下运行的高轨卫星天基定轨原理演示系统。该系统实现了高轨及低轨用户星轨道仿真、全球导航卫星系统(GPS、GLONASS、Galileo和Compass)星座卫星仿真、高轨卫星及地面用户星对全球导航卫星系统的可见性仿真和高轨卫星天基定轨仿真。仿真结果表明:该系统具有效能高、清晰直观等优点,也具有较强的理论和现实意义。  相似文献   

18.
Summary.  GFZ Potsdam and GRGS Toulouse/Grasse jointly developed a new pair of global models of the Earth's gravity field to satisfy the requirements of the recent and future geodetic and altimeter satellite missions. A precise gravity model is a prerequisite for precise satellite orbit restitution, tracking station positioning and altimeter data reduction. According to different applications envisaged, the new model exists in two parallel versions: the first one being derived exclusively from satellite tracking data acquired on 34 satellites, the second one further incorporating satellite altimeter data over the oceans and terrestrial gravity data. The most recent “satellite-only” gravity model is labelled GRIM4-S4 and the “combined” gravity model GRIM4-C4. The models are solutions in spherical harmonics and have a resolution up to degree and order 60 plus a few resonance terms in the case of GRIM4-S4, and up to degree/order 72 in the case of GRIM4-C4, corresponding to a spatial resolution of 555 km at the Earth's surface. The gravitational coefficients were estimated in a rigorous least squares adjustment simultaneously with ocean tidal terms and tracking station position parameters, so that each gravity model is associated with a consistent ocean tide model and a terrestrial reference frame built up by over 300 optical, laser and Doppler tracking stations. Comprehensive quality tests with external data and models, and test arc computations over a wide range of satellites have demonstrated the state-of-the-art capabilities of both solutions in long-wavelength geoid representation and in precise orbit computation. Received 1 February 1996; Accepted 17 July 1996  相似文献   

19.
Precise orbit determination of BeiDou constellation: method comparison   总被引:3,自引:1,他引:2  
Chinese BeiDou navigation satellite system is in official service as a regional constellation with five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites and four medium earth orbit (MEO) satellites. There are mainly two methods for precise orbit determination of the BeiDou constellation found in the current literatures. One is the independent single-system method, where only BeiDou observations are used without help from other GNSS systems. The other is the two-step GPS-assisted method where in the first step, GPS data are used to resolve some common parameters, such as station coordinates, receiver clocks and zenith tropospheric delay parameters, which are then introduced as known quantities in BeiDou processing in the second step. We conduct a thorough performance comparison between the two methods. Observations from the BeiDou experimental tracking stations and the IGS Multi-GNSS Experiment network from January 1 to March 31, 2013, are processed with the Positioning and Navigation Data Analyst (PANDA) software. The results show that for BeiDou IGSO and MEO satellites, the two-step GPS-assisted method outperforms the independent single-system method in both internal orbit overlap precision and external satellite laser ranging validation. For BeiDou GEO satellites, the two methods show close performances. Zenith tropospheric delays estimated from the first method are very close to those estimated from GPS precise point positioning in the second method, with differences of several millimeters. Satellite clock estimates from the two methods show similar performances when assessing the stability of the BeiDou on board clocks.  相似文献   

20.
Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level. Additional TRF test solutions demonstrate that K-Band Range-Rate observations between both GRACE spacecrafts are crucial for accurately estimating the dynamic frame’s orientation, and reveal the importance of the NNT- and NNR-conditions imposed for estimating the components of the dynamic geocenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号