首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A clue towards a retrieval of the zodiacal brightness gathering along a line of sight in the ecliptic plane consists in introducing the other intersection of that line with the terrestrial orbit (Fig. 1). The distribution of the elemental contribution to the brightness, or of the local quantity D [directional scattering coefficient, i.e. cross-section of the unit-volume, which gives very simple expressions (1), (2) for the brightness integral] can then be approached with reduced uncertainty. The assumptions-steady state of the zodiacal cloud; smooth distribution of D—are strongly suggested by the observations, and are much less controversial than the classical assumption of uniform composition and size everywhere.The scattering coefficient may vary along the line of sight as seen in Fig. 3 : an uncertainty bar highly dependent of the abscissa, and considerably reduced in the vicinity of two “nodes”. Both in abscissae and in ordinates, these nodes are conspicuously insensitive to the arbitrary choice of a mathematical model (Table 1).The node exterior to the Earth's orbit (“martian node”) remains at r ? 1.5 a.u. from the Sun (Fig. 4). It gives access to a range of the scattering phase function near Mars' orbit, deconvolved from any radial dependence of that function (Fig. 5). The backscattering effect obtained is a new confirmation of the non-terrestrial origin of the gegenschein.The node interior to the Earth's orbit remains located not far from the middle of each chord (“quasi-radial node”. Fig. 4). It allows to retrieve the radial dependence of D, partly deconvolved from its angular dependence, between 0.5 and 1 a.u. (Fig. 6 and Table 4).The uncertainty bars on D at the two observing locations yield two uncertainty bars of the phase function σ(θ) at 1 a.u. (Fig. 7). At θ = 30°, the forward scattering efficiency (normalized to θ = 90°) cannot exceed 6 and more likely 4. This disagrees with higher values obtained assuming spherical particles, and even obtained in part of the more realistic studies (assuming irregularly shaped particles, or mainly observational) reviewed in Table 5.All of these results are derived, with fair agreement, from three independent observational sources.  相似文献   

2.
The expression for the zodiacal brightness integral is especially simple if the integrand contains the ‘directional scattering coefficient’, D, (a.u.?1), or equivalently the scattering cross-section per unit-volume. The two intersections of the terrestrial orbit with a line of sight lying in the ecliptic offer the possibility of isolating the contribution of the chord, with a conservative assumption of steadiness, but without the controversial assumption of a homogeneous zodiacal cloud. The zodiacal brightnesses between 60 and 120° elongation can be used to derive D0 and D, the value of D and its heliocentric radial derivative, both at 1 a.u. and at a scattering angle of 90°. A polarimetric treatment leads to the local polarization degree, P0, and to its heliocentric derivative, P. Applied to all three available observational sources, this method invalidates the assumption of homogeneity, leading to a rather high relative gradient PP0 near 1 a.u. (? 12, ? 16 or ? 24%, according to the source, as the Sun's distance decreases from 1.0 to 0.9 a.u.).The method is extended to Doppler spectrometry, taking advantage of the two equal projections on the line of sight of the Earth's velocity vector. The brightness Z0 and the Dopplershift Δλ0 observed at 90° elongation, together with the derivatives w.r.t. elongation ε, of the brightness, Z? and of the Dopplershift, Δλ, can be used to retrieve the mean orbital velocity, v, of the interplanetary scatterers in the region of the terrestrial orbit. The two most reliable observational sources lead, with fair agreement, to a relative excess (v ? V)V, over the terrestrial velocity, of the order of + 25%.  相似文献   

3.
Obtaining reliable measurements of plasma parameters in the Sun’s corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.  相似文献   

4.
Considerations of the geometry appropriate to observations of the zodiacal light made from out of the ecliptic plane yield the general inversion of the brightness integral. The brightness per unit volume of interplanetary space can thus be determined in the immediate neighborhood of the spacecraft in directions confined to a unique viewing plane which depends upon the spacecraft's trajectory. The implementation of this technique guarantees the maximum information content of optical observations made from future deep-space probes including the “Out-of-Ecliptic” mission scheduled for launch in 1983.  相似文献   

5.
Loran  Jon M.  Brown  John C.  Correia  Emilia  Kaufmann  Pierre 《Solar physics》1985,95(2):363-370
The Helios spacecraft zodiacal light photometers are used to observe the earthward-directed solar mass ejection transient of 27 November, 1979 described by Howard et al. (1982) that completely circles the Sun in coronagraph observations. At this time, Helios B was situated 30° east of the Sun-Earth line at 0.5 AU. The brightness increase moved outward directly along the Sun-Earth line over a period of approximately 24 hr, indicating a strong collimation of the ejection. The outward motion and mass estimates of the ejected material from the photometers compared with near-Earth observations from IMP spacecraft show that at least a portion of the density increase observed at Earth on 29 and 30 November was associated with this ejection.  相似文献   

6.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   

7.
The initially supersonic flow of the solar wind passes through a magnetic shock front where its velocity is supposed to be reduced to subsonic values. The location of this shock front is primarily determined by the energy density of the external interstellar magnetic field and the momentum density of the solar wind plasma. Interstellar hydrogen penetrating into the heliosphere undergoes charge exchange processes with the solar wind protons and ionization processes by the solar EUV radiation. This results in an extraction of momentum from the solar wind plasma. Changes of the geometry and the location of the shock front due to this interaction are studied in detail and it is shown that the distance of the magnetic shock front from the Sun decreases from 200 to 80 AU for an increase of the interstellar hydrogen density from 0.1 to 1.0 cm−3. The geometry of the shock front is essentially spherical with a pronounced embayment in the direction opposite to the approach of interstellar matter which depends very much on the temperature of the interstellar gas. Due to the energy loss by the interaction with neutral matter the solar wind plasma reduces its velocity with increasing distance from the Sun. This modifies Parker's solution of a constant solar wind velocity.  相似文献   

8.
From published ground-base, spacecraft, and rocket photometry and polarimetry of the zodiacal light, a number of optical and physical parameters have been derived. It was assumed that the number density, mean particle size, and albedo vary with heliocentric distance, and shown that average individual interplanetary particles have a small but definite opposition effect, a mean single-scattering albedo in the V band at 1-AU heliocentric distance of 0.09 ± 0.01, and a zero-phase geometric albedo of 0.04. Modeled by a power law, both albedos decrease with increasing heliocentric distance as r?0.54. The corresponding exponents for changes in mean particle size and number density are related in a simple way. The median orbital inclination of zodiacal light particles with respect to the ecliptic is 12°, close to the observed median value for faint asteroids and short-period comets. Furthermore, the color of dust particles and its variation with solar phase angle closely resemble those of C asteroids. These findings are, at least, consistent with the zodiacal cloud originating primarily from collisions among asteroids. Finally, a value of ?1018?ErmE g was derived for the mass of the zodiacal cloud, where ?E is the mean particle radius (in micrometers) at 1-AU-heliocentric distance. For extinction in the ecliptic, Δm = 10?5??12mag was obtained, where ? is the solar elongation in degrees.  相似文献   

9.
We have launched into near-Earth orbit a solar mass-ejection imager (SMEI) that is capable of measuring sunlight Thomson-scattered from heliospheric electrons from elongations to as close as 18 to greater than 90 from the Sun. SMEI is designed to observe time-varying heliospheric brightness of objects such as coronal mass ejections, co-rotating structures and shock waves. The instrument evolved from the heliospheric imaging capability demonstrated by the zodiacal light photometers of the Helios spacecraft. A near-Earth imager can provide up to three days warning of the arrival of a mass ejection from the Sun. In combination with other imaging instruments in deep space, or alone by making some simple assumptions about the outward flow of the solar wind, SMEI can provide a three-dimensional reconstruction of the surrounding heliospheric density structures.  相似文献   

10.
11.
The spectrum of Saturn was measured from 80 to 350 cm?1 (29 to 125 μm) with ≈6-cm?1 resolution using a Michelson interferometer aboard NASA's Kuiper Airborne Observatory. These observations are of the full disk, with little contribution from the rings. For frequencies below 300 cm?1, Saturn's brightness temperature rises slowly, reaching ≈111°K at 100 cm?1. The effective temperature is 96.8 ± 2.5°K, implying that Saturn emits 3.0 ± 0.5 times as much energy as it receives from the Sun. The rotation-inversion manifolds of NH3 that are prominent in the far-infrared spectrum of Jupiter are not observed on Saturn. Our models predict the strengths to be only ≈2 to 5°K in brightness temperature because most of the NH3 is frozen out; this is comparable to the noise in our data. By combining our data with those of an earlier investigation when the Saturnicentric latitude of the Sun was B′ = 21.2°, we obtain the spectrum of the rings. The high-frequency end of the ring spectrum (ν > 230 cm?1) has nearly constant brightness temperature of 85°K. At lower frequencies, the brightness temperature decreases roughly as predicted by a simple absorption model with an optical depth proportional to ν1.5. This behavior could be due to mu-structure on the surface of the ring particles with a scale size of 10 to 100 μm and/or to impurities in their composition.  相似文献   

12.
We measured the brightness of the white light corona at the total solar eclipses on 1 August 2008 and 22 July 2009, when solar activity was at its lowest in one hundred years. After careful calibration, the brightness of the corona in both eclipses was evaluated to be approximately 0.4×10?6 of the total brightness of the Sun, which is the lowest level ever observed. Furthermore, the total brightness of the K+F-corona beyond 3R in both eclipses is lower than some of the previous measurements of the brightness of the F-corona only. Our accurate measurements of the coronal brightness provide not only the K-corona brightness during a period of very low solar activity but also a reliable upper limit of the brightness of the F-corona.  相似文献   

13.
In the research notes of this Journal, both Schuerman (1979, henceforth Paper I) and Buitrago (1979, henceforth Paper II) independently derived expressions for the general1, mathematical inversion of the zodiacal light brightness integral. In this communication, it is shown that the expressions are equivalent, differing only in the choice of reference systems.  相似文献   

14.
Space density of interplanetary dust grains is directly related to the gradient of zodiacal light observed, at constant elongation ?, by a space photometer moving and aiming in the symmetry plane of the solar system.  相似文献   

15.
Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈106 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of the zodiacal cloud at large latitudes suggests that it is mainly produced by particles with higher inclinations than what would be expected for asteroidal particles produced by sources in the main belt. From these results, we infer that asteroidal dust represents a smaller fraction of the zodiacal cloud than previously thought. We estimate that the total mass accreted by the Earth in Karin and Veritas particles with diameters 20-400 μm is ≈15,000-20,000 tons per year (assuming 2 g cm−3 particles density). This is ≈30-50% of the terrestrial accretion rate of cosmic material measured by the Long Duration Exposure Facility. We hypothesize that up to ≈50% of our collected interplanetary dust particles and micrometeorites may be made up of particle species from the Veritas and Karin families. The Karin family IDPs should be about as abundant as Veritas family IDPs though this ratio may change if the contribution of third, near-ecliptic source is significant. Other sources of dust and/or large impact speeds must be invoked to explain the remaining ≈50-70%. The disproportional contribution of Karin/Veritas particles to the zodiacal cloud (only 5-9%) and to the terrestrial accretion rate (30-50%) suggests that the effects of gravitational focusing by the Earth enhance the accretion rate of Karin/Veritas particles relative to those in the background zodiacal cloud. From this result and from the latitudinal brightness of the zodiacal cloud, we infer that the zodiacal cloud emission may be dominated by high-speed cometary particles, while the terrestrial impactor flux contains a major contribution from asteroidal sources. Collisions and Poynting-Robertson drift produce the size-frequency distribution (SFD) of Karin and Veritas particles that becomes increasingly steeper closer to the Sun. At 1 AU, the SFD is relatively shallow for small particle diameters D (differential slope exponent of particles with D?100 μm is ≈2.2-2.5) and steep for D?100 μm. Most of the mass at 1 AU, as well as most of the cross-sectional area, is contributed by particles with D≈100-200 μm. Similar result has been found previously for the SFD of the zodiacal cloud particles at 1 AU. The fact that the SFD of Karin/Veritas particles is similar to that of the zodiacal cloud suggests that similar processes shaped these particle populations. We estimate that there are ≈5×1024 Karin and ≈1025 Veritas family particles with D>30 μm in the Solar System today. The IRAS observation of the dust bands may be satisfactorily modeled using ‘averaged’ SFDs that are constant with semimajor axis. These SFDs are best described by a broken power-law function with differential power index α≈2.1-2.4 for D?100 μm and by α?3.5 for 100 μm?D?1 cm. The total cross-sectional surface area of Veritas particles is a factor of ≈2 larger than the surface area of the particles producing the inner dust bands. The total volumes in Karin and Veritas family particles with 1 μm<D<1 cm correspond to D=11 km and D=14 km asteroids with equivalent masses ≈1.5×1018 g and ≈3.0×1018 g, respectively (assuming 2 g cm−3 bulk density). If the size-frequency and radial distribution of particles in the zodiacal cloud were similar to those in the asteroid dust bands, we estimate that the zodiacal cloud represents ∼3×1019 g of material (in particles with 1 μm<D<1 cm) at ±10° around the ecliptic and perhaps as much as ∼1020 g in total. The later number corresponds to about a 23-km-radius sphere with 2 g cm−3 density.  相似文献   

16.
Martha S. Hanner 《Icarus》1980,43(3):373-380
The zodiacal light brightness and measured spatial density of the interplanetary dust lead to a mean geometric albedo of 0.24 for the dust particles near 1 AU; whereas the composition of collected micrometeroids suggests a geometric albedo ?0.1. The data do not support the very low albedo (?0.01) proposed by A. F. Cook [Icarus33 (1978), 349–360]. The evidence is against a change in the mean particle albedo between 0.1 and 2 AU. Beyond 2 AU the data are unclear and a change in albedo is not ruled out.  相似文献   

17.
The HELIOS A and B zodiacal light photometers can be used to view comets as they pass the spacecraft. Because the HELIOS spacecraft orbit the Sun on their own, and are generally far from Earth, the spacecraft allow us to view comets from a different perspective than normally available. Comet West (1976VI) passed through perihelion on February 25, 1976. The comet crossed the HELIOS A and B spacecraft zodiacal light photometer fields of view, allowing them to record the brightness, polarization and color of the comet. Data from the U, B and V photometers showed a distinct blueing followed by a slight reddening corresponding to the ion and dust tails, respectively, entering the field of view of each photometer sector. The extent of the tail of Comet West was far greater seen from the HELIOS spacecraft than seen from Earth, even taking into account their generally closer viewing perspective. As Comet West traveled away from the Sun, it was observed in the zodiacal light photometer fields of view at a solar distance of more than 1.4 AU. The zodiacal light photometers also viewed Comet Meier (1978XXI). Comet Meier is far more compact than Comet West, extremely blue and unlike Comet West showed no significant dust tail. The interplanetary medium is observed to a level of the variations in the brightness of the electron-scattering component near Comet West. A brightness bump present in the data before the comet reached some photometer positions can be shown to approximately form a parabolic shape sunward and ahead of the orbital motion of the Comet West nucleus. We presume that this bump is evidence of the position of the cometary atmosphere or an enhancement of the ambient interplanetary medium ahead of the comet motion. The brightness bump in terms of density generally corresponds to a density enhancement of the ambient medium by a few times in the vicinity of the comet. When compared with Comet Halley and couched in terms of the shock stand-off distance, the distance of this brightness increase from the nucleus implies a neutral gas production rate of approximately 2.5 times that of Halley. This is in agreement with the neutral gas production rate measured from Comet West using more direct techniques.Now at Scientific Applications Inc., La Jolla, California, U.S.A.  相似文献   

18.
Model calculations are used to determine the location of interplanetary dust particles that contribute most of the brightness of the zodiacal light as seen from Earth, in and out of the ecliptic plane and in the F-corona. It is found that as one observes in Increasing ecliptic latitude (β), the distance to the Earth decreases for dust contributing equal fractions to the line-of-sight brightness. This and other results will help in the analysis of: (1) structures in the observed brightness of the zodiacal light, (2) bands such as those observed by IRAS, (3) temporal variations in the brightness of the zodiacal light, (4) observations of the photometric axis, and (5) past and future observations of the F-corona.  相似文献   

19.
Analyses of the data from the Meteoroid Detection Experiment (MDE) and the Imaging Photopolarimeter (IPP) aboard Pioneer 10 and Pioneer 11 have led to contradictory conclusions. While the MDE indicates a significant particle environment in the outer solar system (out to at least 5 AU), the IPP sees no zodiacal light (therefore implying no small particles) past 3.3 AU. We reconcile the two results by noting that the spectral index, p [relating particle radius, s, and particle concentration, n(s), i.e., dn(s) = Cs?pds], is not a constant in the solar system, but changes from p < 2 near 1 AU to p > 2.5 at 5 AU for particles in the range of 10 μm. The MDE value of p = 1.8 at 1 AU is in agreement with previous satellite measurements, while our earlier analysis of the Pioneer 10 Jovian encounter data indicated p > 2.5 at 5 AU. A joint analysis of the Pioneer 10 and Pioneer 11 MDE data also indicates that p > 2.5 in the outer solar system. We show that a varying spectral index violates a major assumption used in the interpretation of the IPP data, which in turn had led to the conclusion that zodiacal dust is absent beyond 3.3 AU. With p a function of solar distance, the MDE data is now consistent with the IPP data, thus indicating a significant particle concentration in the outer solar system.  相似文献   

20.
Kurochka  L. N.  Matsuura  O. T.  Picazzio  E. 《Solar physics》1997,170(2):227-233
The brightness of the solar corona due to Thomson scattering depends linearly on the electron density, while the brightness due to the Balmer continuum is proportional to its square. As a consequence, information on the distribution of the electron density in the corona can be obtained by comparing the radial profiles of the surface brightness in both continua. This idea was explored for the first time in the solar eclipse of November 03, 1994, in Foz do Iguaçu, PR, Brazil. Pictures of the corona were obtained with interference filters, one centered at 477 nm (Thomson continuum) and another one at 347 nm (Balmer continuum). The second filter also transmits the Thomson continuum through its spectral window, so that the Balmer images contain Thomson contamination. This paper reports on the observational results and presents their preliminary analysis. It was found that in certain radial directions, the normalized profiles of both continua (Thomson and contaminated Balmer) coincide, but in other directions they differ significantly. The non-coincident profiles may only occur if Balmer emission becomes important in relation to the Thomson scattering. A simple calculation shows that in such cases the electron density in the inner corona must exceed the values of standard models by up to 6.1 × 104 times, maintaining however the total number of electrons along the line of sight in agreement with the prediction of standard models. It is concluded that the corona contains high electron concentration in cloudlets of subtelescopic sizes down to 106 cm. The varied behavior of the radial profiles of both continua in different radial directions, suggests that the subtelescopic structures might be related to the spatially variable topology of coronal magnetic flux tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号