首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glacial isostatic adjustment (GIA) of the British Isles is of interest due to the constraints that can be provided on key model parameters such as the global meltwater signal, local ice sheet history and viscoelastic earth structure. A number of recent studies have modelled relative sea‐level (RSL) data from this region to constrain model parameters. As indicated in these studies, the sensitivity of these data to both local and global parameters results in a highly non‐unique problem. This study aims to address this inherent non‐uniqueness by combining a previously published British–Irish ice model that is based on the most recent geomorphological data with a new global ice sheet model that provides an accurate prediction of eustatic sea‐level change. In addition, constraints from Global Positioning System (GPS) measurements of present‐day vertical land motion are considered alongside the entirety of RSL data from both Great Britain and Ireland. A model solution is found that provides a high‐quality fit to both the RSL data and the GPS data. Within the range of earth viscosity values considered, the optimal data model fits were achieved with a relatively thin lithosphere (71 km), upper mantle viscosities in the range 4–6 × 1020 Pa s and lower mantle viscosities ≥ 3 × 1022 Pa s. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The British Isles have been the focus of a number of recent modelling studies owing to the existence of a high‐quality sea‐level dataset for this region and the suitability of these data for constraining shallow earth viscosity structure, local to regional ice sheet histories and the magnitude/timing of global meltwater signals. Until recently, the paucity of both glaciological and relative sea‐level (RSL) data from Ireland has meant that the majority of these glacial isostatic adjustment (GIA) modelling studies of the British Isles region have tended to concentrate on reconstructing ice cover over Britain. However, the recent development of a sea‐level database for Ireland along with emergence of new glaciological data on the spatial extent, thickness and deglacial chronology of the Irish Ice Sheet means it is now possible to revisit this region of the British Isles. Here, we employ these new data to constrain the evolution of the Irish Ice Sheet. We find that in order to reconcile differences between model predictions and RSL evidence, a thick, spatially extensive ice sheet of ~600–700 m over much of north and central Ireland is required at the LGM with very rapid deglaciation after 21 k cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Models of glacio‐hydroisostatic sea‐level change have been published for the British Isles that are broadly consistent with the observational evidence, as well as with glaciological constraints. It has been argued, however, that the models fail to represent sea‐level change along the Irish Sea margins and in southern Ireland for the post‐deglaciation period. The argument rests on the interpretation of the depositional environment of the elevated ‘Irish Sea Drift’ on both sides of the Irish Sea: whether this is terrestrial or glaciomarine. The isostatic models for the British Isles are consistent with the former interpretation in that sea‐levels on either side of the Irish Sea, south of about the Isle of Man, are not predicted to have risen above present sea‐level at any time since the deglaciation of the Irish Sea. This implies that ice over both the Irish Sea and Ireland was relatively thin (ca. 600–700 m over Ireland). If the glaciomarine interpretation of the elevated Irish Sea Drift is correct, then the maximum ice thickness over central and southern Ireland would have to reach 2000 m, exceeding that over Scotland. Furthermore, for the resulting sea‐level change to be consistent with the Holocene evidence, this thick ice sheet could not have extended to the eastern side of the Irish Sea. Nor could it have been very thick at its northern and western limits. If such an ice model is extreme and incompatible with glaciological observations then the alternative is to accept the interpretation of the Irish Sea Drift as terrestrial in origin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In support of their ‘glaciomarine’ model for the deglaciation of the Irish Sea basin, Eyles and McCabe cited the occurrence of distal glaciomarine mud drapes onshore in the Isles of Scilly and North Devon, and of arctic beach‐face gravels and sands around the shores of the Celtic Sea. Glacial and sea‐level data from the southern part of the Irish Sea in the terminal zone of the ice stream and the adjacent continental slope are reviewed here to test this aspect of the model. The suggestion that the glacial sequences of both the Isles of Scilly and Fremington in North Devon are glaciomarine mud drapes is rejected. An actively calving tidewater margin only occurred early in the deglacial sequence close to the terminal zone in the south‐central Celtic Sea. Relative sea‐levels were lower, and therefore glacio‐isostatic depression less, than envisaged in the glaciomarine model. Geochronological, sedimentological and biostratigraphical data indicate that the raised beach sequences around the shores of the Celtic Sea and English Channel were deposited at, or during regression soon after, interglacial eustatic highstands. Evidence for ice‐rafting at a time of high relative sea‐levels is restricted to a phase(s) earlier than the Late Devensian. These data indicate that the raised beach sequences have no bearing on the style of Irish Sea deglaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Vertical land motion caused by continuing glacial isostatic adjustment is one of several important components of sea‐level change and is not limited just to previously glaciated regions. A national‐scale analysis for the British Isles shows an ellipse of present‐day relative uplift (relative sea‐level fall), ~1.2 mm a?1, broadly centred on the deglaciated mountains of Scotland. The pattern of three foci of relative subsidence, ~1 mm a?1, results from the additional interactions of the deglacial meltwater load on the Atlantic basin and the continental shelf, and the signal due to far‐field ice sheets. At a local scale, sediment compaction can more than double the rate of relative land subsidence. Relative land‐level change (the negative of relative sea‐level change) is not the same as vertical land motion. There is a spatial pattern in the difference between relative land‐level change and vertical land motion, with differences at present of approximately ?0.1 to ?0.3 mm a?1 around the British Isles and +2.5 to ?1.5 mm a?1 globally. For the wider scientific and user community, whether or not the differences are considered significant will depend upon the location, time frame and spatial scale of the study that uses such information. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

9.
The existence of a small population of ‘relict rock glaciers’ scattered across the main British mountain areas has previously been inferred from published cases of individual sites or local clusters. Discrete debris accumulations (DDAs) of widely differing character have been identified as ice‐debris landforms (whether ‘rock glaciers’ or ‘protalus lobes’) partly from morphological, sedimentological and topo‐locational evidence, but principally by analogy with both active and relict examples in present‐day arctic/alpine environments, with consequent palaeoclimate inferences. However, re‐interpretation of several supposed rock glaciers as rock slope failures has cast doubt on both the palaeoclimatic reconstructions and the origin of the remaining features. Issues of polygenesis and mimicry/equifinality have contributed to some previous misidentifications. We re‐evaluate the 28 candidate cases based on new field and image‐analysis evidence and place them on a continuum from no ice presence through passive ice presence and glacial shaping to emplacement onto glacier ice with consequent melt‐out topography. A null hypothesis approach (that there are no relict rock glaciers in the British mountains) is pursued, and the evidence indicates that none of the 28 cases clearly warrants classification as a relict rock glacier; their characteristics can be explained without recourse to any significant forward debris movement controlled or facilitated by incorporated or underlying ice as it deforms and melts out. However, only one‐third of the candidate DDAs are attributed in whole or part to rock slope failure (sensu stricto), with other debris sources including incremental rockfall, bedrock knolls with coarse debris veneer, protalus rampart and moraine. A few cases deserve more detailed investigation of their structure, morphology and sediments within a broader local glaciological/topographical context, with multitemporal/polygenetic evolution in mind. But it is for future researchers to demonstrate that deforming ice played an incontestable part in shaping these often enigmatic DDAs, given that other causes are simpler and commoner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Aminostratigraphy is central to the recently revised correlation of Quaternary deposits in the British Isles, providing a link between terrestrial deposits and marine Oxygen Isotope Stages. The central tenet of British aminostratigraphy, however, that shells from the same interglacial yield very similar ratios, so that the characteristic ratios from different interglacials are distinct, remains uncertain. The data available suggest that amino‐acid ratios from different interglacials do not fall into discrete groups, but overlap considerably. It is therefore not valid to assign individual shells to Oxygen Isotope Stages simply on the basis of their amino‐acid ratios, which means that filtering data to remove high or low values, on the assumption that they represent reworked shells, is unacceptable. The range of ‘characteristic ratios’ assigned to British warm stages may have been underestimated and the degree of separation between them overestimated. Amino‐acid ratios should be treated as sample data that are naturally variable. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Baeteman, C., Waller, M. & Kiden, P. 2011: Reconstructing middle to late Holocene sea‐level change: A methodological review with particular reference to ‘A new Holocene sea‐level curve for the southern North Sea’ presented by K.‐E. Behre. Boreas, 10.1111/j.1502‐3885.2011.00207.x. ISSN 0300‐9483. A number of disciplines are involved in the collection and interpretation of Holocene palaeoenvironmental data from coastal lowlands. For stratigraphic frameworks and the assessment of relative sea‐level (RSL) change, many non‐specialists rely on existing regional models. It is, however, important that they are aware of major developments in our understanding of the factors controlling coastal change and of the potential sources of error in sea‐level reconstructions. These issues are explored through a critical evaluation of a new sea‐level curve presented by Behre (2003, 2007) for the southern North Sea. In contrast to most sea‐level curves published from this region over the last 20 years, the curve shows strong fluctuations that are interpreted as representing vertical movements of sea level. We present a detailed examination of the data used by Behre. From this analysis it is clear that many of the data points used are unsuitable for high‐resolution (centimetre or decimetre) sea‐level reconstruction. This paper also gives an overview of possible sources of error with respect to the age and altitude of sea‐level index points and of changes in our understanding of the processes that underpin the interpretation of the organic and occupation levels used as index points. The constraints on the spatial scale over which sea‐level reconstructions can be applied (changes in palaeotidal range and crustal movements) are also considered. Finally, we discuss whether the large‐amplitude centennial‐scale sea‐level fluctuations proposed by Behre can be reconciled with the known mechanisms of sea‐level change and other recent high‐resolution studies from this region. We conclude that such fluctuations are highly unlikely to be real features of the sea‐level history of the southern North Sea.  相似文献   

12.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   

13.
The snowball Earth hypothesis describes episodes of Neoproterozoic global glaciations, when ice sheets reached sea‐level, the ocean froze to great depth and biota were decimated, accompanied by a complete shutdown of the hydrological cycle. Recent studies of sedimentary successions and Earth systems modelling, however, have brought the hypothesis under considerable debate. The Squantum ‘Tillite’ (Boston Basin, USA), is one of the best constrained snowball Earth successions with respect to age and palaeogeography, and it is suitable to test the hypothesis for the Gaskiers glaciation. The approach used here was to assess the palaeoenvironmental conditions at the type locality of the Squantum Member through an analysis of sedimentary facies and weathering regime (chemical index of alteration). The stratigraphic succession with a total thickness of ca 330 m documents both glacial and non‐glacial depositional environments with a cool‐temperate glacial to temperate non‐glacial climate weathering regime. The base of the succession is composed of thin diamictites and mudstones that carry evidence of sedimentation from floating glacial ice, interbedded with inner shelf sandstones and mudstones. Thicker diamictites interbedded with thin sandstones mark the onset of gravity flow activity, followed by graded sandstones documenting channellized mass gravity flow events. An upward decrease in terrigenous supply is evident, culminating in deep‐water mudstones with a non‐glacial chemical weathering signal. Renewed terrigenous supply and iceberg sedimentation is evident at the top of the succession, beyond which exposure is lost. The glacially influenced sedimentary facies at Squantum Head are more consistent with meltwater dominated alpine glaciation or small local ice caps. The chemical index of alteration values of 61 to 75 for the non‐volcanic rocks requires significant exposure of land surfaces to allow chemical weathering. Therefore, extreme snowball Earth conditions with a complete shutdown of the hydrological cycle do not seem to apply to the Gaskiers glaciation.  相似文献   

14.
We present relative sea level (RSL) curves in Antarctica derived from glacial isostatic adjustment (GIA)predictions based on the melting scenarios of the Antarctic ice sheet since the Last Glacial Maximum (LGM)given in previous works.Simultaneously,Holocene-age RSL observations obtained at the raised beaches along the coast of Antarctica are shown to be in agreement with the GIA predictions.The differences from previously published ice-loading models regarding the spatial distribution and total mass change of the melted ice are significant.These models were also derived from GIA modelling; the variations can be attributed to the lack of geological and geographical evidence regarding the history of crustal movement due to ice sheet evolution.Next,we summarise the previously published ice load models and demonstrate the RSL curves based on combinations of different ice and earth models.The RSL curves calculated by GIA models indicate that the model dependence of both the ice and earth models is significantly large at several sites where RSL observations were obtained.In particular,GIA predictions based on the thin lithospheric thickness show the spatial distributions that are dependent on the melted ice thickness at each sites.These characteristics result from the short-wavelength deformation of the Earth.However,our predictions strongly suggest that it is possible to find the average ice model despite the use of the different models of lithospheric thickness.By sea level and crustal movement observations,we can deduce the geometry of the post-LGM ice sheets in detail and remove the GIA contribution from the crustal deformation and gravity change observed by space geodetic techniques,such as GPS and GRACE,for the estimation of the Antarctic ice mass change associated with recent global warming.  相似文献   

15.
Key external forcing factors have been proposed to explain the collapse of ice sheets, including atmospheric and ocean temperatures, subglacial topography, relative sea level and tidal amplitudes. For past ice sheets it has not hitherto been possible to separate relative sea level and tidal amplitudes from the other controls to analyse their influence on deglaciation style and rate. Here we isolate the relative sea level and tidal amplitude controls on key ice stream sectors of the last British–Irish and Fennoscandian ice sheets using published glacial isostatic adjustment models, combined with a new and previously published palaeotidal models for the NE Atlantic since the Last Glacial Maximum (22 ka BP). Relative sea level and tidal amplitude data are combined into a sea surface elevation index for each ice stream sector demonstrating that these controls were potentially important drivers of deglaciation in the western British Irish Ice Sheet ice stream sectors. In contrast, the Norwegian Channel Ice Stream was characterized by falling relative sea level and small tidal amplitudes during most of the deglaciation. As these simulations provide a basis for observational field testing we propose a means of identifying the significance of sea level and tidal amplitudes in ice sheet collapse.  相似文献   

16.
The glaciomarine model for deglaciation of the Irish Sea basin suggests that the weight of ice at the last glacial maximum was sufficient to raise relative sea‐levels far above their present height, destabilising the ice margin and causing rapid deglaciation. Glacigenic deposits throughout the basin have been interpreted as glaciomarine. The six main lines of evidence on which the hypothesis rests (sedimentology, deformation structures, delta deposits, marine fauna, amino‐acid ratios and radiocarbon dates) are reviewed critically. The sedimentological interpretation of many sections has been challenged and it is argued that subglacial sediments are common rather than rare and that there is widespread evidence of glaciotectonism. Density‐driven deformation associated with waterlain sediments is rare and occurs where water was ponded locally. Sand and gravel deposits interpreted as Gilbert‐type deltas are similarly the result of local ponding or occur where glaciers from different source areas uncoupled. They do not record past sea‐levels and the ad hoc theory of ‘piano‐key tectonics’ is not required to explain the irregular pattern of altitudes. The cold‐water foraminifers interpreted as in situ are regarded as reworked from Irish Sea sediments that accumulated during much of the late Quaternary, when the basin was cold and shallow with reduced salinities. Amino‐acid age estimates used in support of the glaciomarine model are regarded as unreliable. Radiocarbon dates from distinctive foraminiferal assemblages in northeast Ireland show that glaciomarine sediments do occur above present sea‐level, but they are restricted to low altitudes in the north of the basin and record a rise rather than a fall in sea‐level. It is suggested here that the oldest dates, around 17 000 yr BP, record the first Late Devensian (Weichselian) marine inundation above present sea‐level. This accords with the pattern but not the detail of recent models of sea‐level change. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A mathematical model of carbonate platform evolution is presented in which depth‐dependent carbonate growth rates determine platform‐top accumulation patterns in response to rising relative sea‐level. This model predicts that carbonate platform evolution is controlled primarily by the water depth and sediment accumulation rate conditions at the onset of relative sea‐level rise. The long‐standing ‘paradox of a drowned platform’ arose from the observation that maximum growth rate potentials of healthy platforms are faster than those of relative sea‐level rise. The model presented here demonstrates that a carbonate platform could be drowned during a constant relative sea‐level rise whose rate remains less than the maximum carbonate production potential. This scenario does not require environmental changes, such as increases in nutrient supply or siliciclastic sedimentation, to have taken place. A rate of relative sea‐level rise that is higher than the carbonate accumulation rate at the initial water depth is the only necessary condition to cause continuous negative feedbacks to the sediment accumulation rates. Under these conditions, the top of the carbonate platform gradually deepens until it is below the active photic zone and drowns despite the strong maximum growth potential of the carbonate production factory. This result effectively resolves the paradox of a drowned carbonate platform. Test modelling runs conducted with 2·5 m and 15 m initial sea water depths at bracketed rates of relative sea‐level rise have determined how fast the system catches up and maintains the ‘keep‐up’ phase. This is the measure of time necessary for the basin to respond fully to external forcing mechanisms. The duration of the ‘catch‐up’ phase of platform response (termed ‘carbonate response time’) scales with the initial sea water depth and the platform‐top aggradation rate. The catch‐up duration can be significantly elongated with an increase in the rate of relative sea‐level rise. The transition from the catch‐up to the keep‐up phases can also be delayed by a time interval associated with ecological re‐establishment after platform flooding. The carbonate model here employs a logistical equation to model the colonization of carbonate‐producing marine organisms and captures the initial time interval for full ecological re‐establishment. This mechanism prevents the full extent of carbonate production to be achieved at the incipient stage of relative sea‐level rise. The increase in delay time due to the carbonate response time and self‐organized processes associated with biological colonization increase the chances for platform drowning due to deepening of water depth (> ca 10 m). Furthermore this implies a greater likelihood for an autogenic origin for high‐frequency cyclic strata than has been estimated previously.  相似文献   

18.
This paper presents a review of AMS radiocarbon dating evidence for human occupation of Britain during the Late‐glacial Interstadial. The dates are all on humanly modified materials, including artefacts, and on human bone. The CalPal program is used to test whether the earliest evidence of human presence shows any correlation with more widespread climatic events, and if the British chronology differs significantly from that of neighbouring regions of northwest Europe. In the second part of the paper a number of well‐dated sites with British Late Upper Palaeolithic ‘Creswellian’ technology are examined and compared with lithic assemblages from The Netherlands and Belgium. The main conclusions of this work are that expansion of human populations into the northern edge of the upland zone just before or at the beginning of GI‐1 was followed by repopulation of the British Isles possibly with very little time‐lag. The British Creswellian sites offer evidence of this earliest resettlement, which is mainly focused on the upland margins of western and central Britain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Vertical ground motion (VGM) rates stand as crucial information, either for predicting the impact of the actual sea level rise along low-lying coasts or refining geodynamic problems. Because present day VGM rates have a magnitude smaller than 10 mm/yr, they remain challenging to quantify and often elusive. We focus on the quantification of global-scale VGM rates in order to identify global or regional trends. We computed VGM rates by combining tide gauges records and local satellite altimetry, which yield a new dataset of 634 VGM rates. We further compare this database to previous studies that use geodetic techniques and tide gauges records in order to evaluate the consistency of both our results and previous ones. The magnitudes differ by less than 5 mm/yr, and similar subsidence and uplift general tendencies appear. Even if the asset of our database stands in the greater number of sites, the combination of all studies, each with different pros and cons, yields a hybrid dataset that makes our attempt to extract VGM trends more robust than any other, independent study. Fennoscandia, the West coast of North America, and the eastern coast of Australia are uplifting, while the eastern coast of North America, the British Isles and Western Europe, the eastern Mediterranean Sea, Japan, and the western coast of Australia are subsiding. Glacial Isostatic Adjustment (GIA) is expected to provide a major contribution to the present-day signal. Aside from Fennoscandia, observed VGM often depart from the GIA model predictions of Peltier (2004). This either results from an underestimate of the model predictions or from the influence of other processes: indeed, the influence of the geodynamic setting appears in particular along the coasts of western North America or Japan, where the alternation of transform faults and subduction zones makes it possible to assign contrasted behaviours to the local geodynamic context. Local mechanisms like anthropogenic processes or sediment compaction, also contribute to VGM. This remains true for the critical cases of Venice, the Gulf of Mexico, the Ganges delta, and the Maldives, which are particularly exposed to the current sea level rise.  相似文献   

20.
Traditionally regarded as a relict permafrost and periglacial landscape that lay beyond the limits of Pleistocene glaciation, the granite uplands of northern Dartmoor in south‐west England in fact contain geomorphological evidence for the former existence of a plateau ice cap, making the area the location of the southernmost independent glacier mass in the British Isles. In addition to weakly U‐shaped valleys, the most prominent evidence comprises arcuate and linear bouldery ridges and hummocky valley floor drift, which are interpreted as latero‐frontal moraines deposited by the outlet glacier lobes of a plateau ice cap. Inset sequences of these depositional landforms, in association with meltwater channels, demarcate the receding margins of the glacier lobes. A numerical model of ice cap development shows that a predominantly thin plateau icefield type glaciation is required in order to produce significant ice flow into surrounding valleys. The highest and most extensive plateau areas were occupied by ice for the longest cumulative period of time throughout the Pleistocene, thereby explaining: (1) the lack of tors in such areas as the product of ‘average’ glacial conditions preferentially removing tors or dampening their production rates, (2) the survival of high relief tors during glaciation if they occupied summits too narrow to develop thick and erosive glacier ice, and (3) the survival of subdued tors in areas glaciated less regularly during the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号