首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present results from the generation of 10-year-long continuous time series of the Earth’s polar motion at 15-min temporal resolution using Global Positioning System ground data. From our results, we infer an overall noise level in our high-rate polar motion time series of 60 \(\upmu \hbox {as}\) (RMS). However, a spectral decomposition of our estimates indicates a noise floor of 4 \(\upmu \hbox {as}\) at periods shorter than 2 days, which enables recovery of diurnal and semidiurnal tidally induced polar motion. We deliberately place no constraints on retrograde diurnal polar motion despite its inherent ambiguity with long-period nutation. With this approach, we are able to resolve damped manifestations of the effects of the diurnal ocean tides on retrograde polar motion. As such, our approach is at least capable of discriminating between a historical background nutation model that excludes the effects of the diurnal ocean tides and modern models that include those effects. To assess the quality of our polar motion solution outside of the retrograde diurnal frequency band, we focus on its capability to recover tidally driven and non-tidal variations manifesting at the ultra-rapid (intra-daily) and rapid (characterized by periods ranging from 2 to 20 days) periods. We find that our best estimates of diurnal and semidiurnal tidally induced polar motion result from an approach that adopts, at the observation level, a reasonable background model of these effects. We also demonstrate that our high-rate polar motion estimates yield similar results to daily-resolved polar motion estimates, and therefore do not compromise the ability to resolve polar motion at periods of 2–20 days.  相似文献   

2.
The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense “coinciding” pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the “ground truth” VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi: 10.1029/2000rs002601) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292–1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450–550 km is preferred for the Chinese region instead of the commonly adopted 350–450 km using the determination method of the optimal IEH proposed in this paper.  相似文献   

3.
A collinearity diagnosis of the GNSS geocenter determination   总被引:4,自引:4,他引:0  
The problem of observing geocenter motion from global navigation satellite system (GNSS) solutions through the network shift approach is addressed from the perspective of collinearity (or multicollinearity) among the parameters of a least-squares regression. A collinearity diagnosis, based on the notion of variance inflation factor, is therefore developed and allows handling several peculiarities of the GNSS geocenter determination problem. Its application reveals that the determination of all three components of geocenter motion with GNSS suffers from serious collinearity issues, with a comparable level as in the problem of determining the terrestrial scale simultaneously with the GNSS satellite phase center offsets. The inability of current GNSS, as opposed to satellite laser ranging, to properly sense geocenter motion is mostly explained by the estimation, in the GNSS case, of epoch-wise station and satellite clock offsets simultaneously with tropospheric parameters. The empirical satellite accelerations, as estimated by most Analysis Centers of the International GNSS Service, slightly amplify the collinearity of the $Z$ geocenter coordinate, but their role remains secondary.  相似文献   

4.
Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth’s surface mass density field. Studying these low-degree fluctuations is an important task that contributes to our understanding of continental hydrology. In this study, we use global GNSS measurements of vertical and horizontal crustal displacements that we correct for atmospheric and oceanic effects, and use a set of modified basis functions similar to Clarke et al. (Geophys J Int 171:1–10, 2007) to perform an inversion of the corrected measurements in order to recover changes in the coefficients of degree-0 (hydrological mass change), degree-1 (centre of mass shift) and degree-2 (flattening of the Earth) caused by variations in the TWS over the period January 2003–January 2015. We infer from the GNSS-derived degree-0 estimate an annual variation in total continental water mass with an amplitude of \((3.49 \pm 0.19) \times 10^{3}\) Gt and a phase of \(70^{\circ } \pm 3^{\circ }\) (implying a peak in early March), in excellent agreement with corresponding values derived from the Global Land Data Assimilation System (GLDAS) water storage model that amount to \((3.39 \pm 0.10) \times 10^{3}\) Gt and \(71^{\circ } \pm 2^{\circ }\), respectively. The degree-1 coefficients we recover from GNSS predict annual geocentre motion (i.e. the offset change between the centre of common mass and the centre of figure) caused by changes in TWS with amplitudes of \(0.69 \pm 0.07\) mm for GX, \(1.31 \pm 0.08\) mm for GY and \(2.60 \pm 0.13\) mm for GZ. These values agree with GLDAS and estimates obtained from the combination of GRACE and the output of an ocean model using the approach of Swenson et al. (J Geophys Res 113(B8), 2008) at the level of about 0.5, 0.3 and 0.9 mm for GX, GY and GZ, respectively. Corresponding degree-1 coefficients from SLR, however, generally show higher variability and predict larger amplitudes for GX and GZ. The results we obtain for the degree-2 coefficients from GNSS are slightly mixed, and the level of agreement with the other sources heavily depends on the individual coefficient being investigated. The best agreement is observed for \(T_{20}^C\) and \(T_{22}^S\), which contain the most prominent annual signals among the degree-2 coefficients, with amplitudes amounting to \((5.47 \pm 0.44) \times 10^{-3}\) and \((4.52 \pm 0.31) \times 10^{-3}\) m of equivalent water height (EWH), respectively, as inferred from GNSS. Corresponding agreement with values from SLR and GRACE is at the level of or better than \(0.4 \times 10^{-3}\) and \(0.9 \times 10^{-3}\) m of EWH for \(T_{20}^C\) and \(T_{22}^S\), respectively, while for both coefficients, GLDAS predicts smaller amplitudes. Somewhat lower agreement is obtained for the order-1 coefficients, \(T_{21}^C\) and \(T_{21}^S\), while our GNSS inversion seems unable to reliably recover \(T_{22}^C\). For all the coefficients we consider, the GNSS-derived estimates from the modified inversion approach are more consistent with the solutions from the other sources than corresponding estimates obtained from an unconstrained standard inversion.  相似文献   

5.
We can map zenith wet delays onto precipitable water with a conversion factor, but in order to calculate the exact conversion factor, we must precisely calculate its key variable $T_\mathrm{m}$ . Yao et al. (J Geod 86:1125–1135, 2012. doi:10.1007/s00190-012-0568-1) established the first generation of global $T_\mathrm{m}$ model (GTm-I) with ground-based radiosonde data, but due to the lack of radiosonde data at sea, the model appears to be abnormal in some areas. Given that sea surface temperature varies less than that on land, and the GPT model and the Bevis $T_\mathrm{m}$ $T_\mathrm{s}$ relationship are accurate enough to describe the surface temperature and $T_\mathrm{m}$ , this paper capitalizes on the GPT model and the Bevis $T_\mathrm{m}$ $T_\mathrm{s}$ relationship to provide simulated $T_\mathrm{m}$ at sea, as a compensation for the lack of data. Combined with the $T_\mathrm{m}$ from radiosonde data, we recalculated the GTm model coefficients. The results show that this method not only improves the accuracy of the GTm model significantly at sea but also improves that on land, making the GTm model more stable and practically applicable.  相似文献   

6.
We present new insights on the time-averaged surface velocities, convergence and extension rates along arc-normal transects in Kumaon, Garhwal and Kashmir–Himachal regions in the Indian Himalaya from 13 years of high-precision Global Positioning System (GPS) time series (1995–2008) derived from GPS data at 14 GPS permanent and 42 campaign stations between $29.5{-}35^{\circ }\hbox {N}$ and $76{-}81^{\circ }\hbox {E}$ . The GPS surface horizontal velocities vary significantly from the Higher to Lesser Himalaya and are of the order of 30 to 48 mm/year NE in ITRF 2005 reference frame, and 17 to 2 mm/year SW in an India fixed reference frame indicating that this region is accommodating less than 2 cm/year of the India–Eurasia plate motion ( ${\sim }4~\hbox {cm/year}$ ). The total arc-normal shortening varies between ${\sim }10{-}14~\hbox {mm/year}$ along the different transects of the northwest Himalayan wedge, between the Indo-Tsangpo suture to the north and the Indo-Gangetic foreland to the south indicating high strain accumulation in the Himalayan wedge. This convergence is being accommodated differentially along the arc-normal transects; ${\sim } 5{-}10~\hbox {mm/year}$ in Lesser Himalaya and 3–4 mm/year in Higher Himalaya south of South Tibetan Detachment. Most of the convergence in the Lesser Himalaya of Garhwal and Kumaon is being accommodated just south of the Main Central Thrust fault trace, indicating high strain accumulation in this region which is also consistent with the high seismic activity in this region. In addition, for the first time an arc-normal extension of ${\sim }6~\hbox {mm/year}$ has also been observed in the Tethyan Himalaya of Kumaon. Inverse modeling of GPS-derived surface deformation rates in Garhwal and Kumaon Himalaya using a single dislocation indicate that the Main Himalayan Thrust is locked from the surface to a depth of ${\sim }15{-}20~\hbox {km}$ over a width of 110 km with associated slip rate of ${\sim }16{-}18~\hbox {mm/year}$ . These results indicate that the arc-normal rates in the Northwest Himalaya have a complex deformation pattern involving both convergence and extension, and rigorous seismo-tectonic models in the Himalaya are necessary to account for this pattern. In addition, the results also gave an estimate of co-seismic and post-seismic motion associated with the 1999 Chamoli earthquake, which is modeled to derive the slip and geometry of the rupture plane.  相似文献   

7.
We show that the current levels of accuracy being achieved for the precise orbit determination (POD) of low-Earth orbiters demonstrate the need for the self-consistent treatment of tidal variations in the geocenter. Our study uses as an example the POD of the OSTM/Jason-2 satellite altimeter mission based upon Global Positioning System (GPS) tracking data. Current GPS-based POD solutions are demonstrating root-mean-square (RMS) radial orbit accuracy and precision of \({<}1\)  cm and 1 mm, respectively. Meanwhile, we show that the RMS of three-dimensional tidal geocenter variations is \({<}6\)  mm, but can be as large as 15 mm, with the largest component along the Earth’s spin axis. Our results demonstrate that GPS-based POD of Earth orbiters is best performed using GPS satellite orbit positions that are defined in a reference frame whose origin is at the center of mass of the entire Earth system, including the ocean tides. Errors in the GPS-based POD solutions for OSTM/Jason-2 of \({<}4\)  mm (3D RMS) and \({<}2\)  mm (radial RMS) are introduced when tidal geocenter variations are not treated consistently. Nevertheless, inconsistent treatment is measurable in the OSTM/Jason-2 POD solutions and manifests through degraded post-fit tracking data residuals, orbit precision, and relative orbit accuracy. For the latter metric, sea surface height crossover variance is higher by \(6~\hbox {mm}^{2}\) when tidal geocenter variations are treated inconsistently.  相似文献   

8.
M-estimation with probabilistic models of geodetic observations   总被引:1,自引:1,他引:0  
The paper concerns \(M\) -estimation with probabilistic models of geodetic observations that is called \(M_{\mathcal {P}}\) estimation. The special attention is paid to \(M_{\mathcal {P}}\) estimation that includes the asymmetry and the excess kurtosis, which are basic anomalies of empiric distributions of errors of geodetic or astrometric observations (in comparison to the Gaussian errors). It is assumed that the influence function of \(M_{\mathcal {P}}\) estimation is equal to the differential equation that defines the system of the Pearson distributions. The central moments \(\mu _{k},\, k=2,3,4\) , are the parameters of that system and thus, they are also the parameters of the chosen influence function. The \(M_{\mathcal {P}}\) estimation that includes the Pearson type IV and VII distributions ( \(M_{\mathrm{PD(l)}}\) method) is analyzed in great detail from a theoretical point of view as well as by applying numerical tests. The chosen distributions are leptokurtic with asymmetry which refers to the general characteristic of empirical distributions. Considering \(M\) -estimation with probabilistic models, the Gram–Charlier series are also applied to approximate the models in question ( \(M_{\mathrm{G-C}}\) method). The paper shows that \(M_{\mathcal {P}}\) estimation with the application of probabilistic models belongs to the class of robust estimations; \(M_{\mathrm{PD(l)}}\) method is especially effective in that case. It is suggested that even in the absence of significant anomalies the method in question should be regarded as robust against gross errors while its robustness is controlled by the pseudo-kurtosis.  相似文献   

9.
For science applications of the gravity recovery and climate experiment (GRACE) monthly solutions, the GRACE estimates of \(C_{20}\) (or \(J_{2}\)) are typically replaced by the value determined from satellite laser ranging (SLR) due to an unexpectedly strong, clearly non-geophysical, variation at a period of \(\sim \)160 days. This signal has sometimes been referred to as a tide-like variation since the period is close to the perturbation period on the GRACE orbits due to the spherical harmonic coefficient pair \(C_{22}/S_{22}\) of S2 ocean tide. Errors in the S2 tide model used in GRACE data processing could produce a significant perturbation to the GRACE orbits, but it cannot contribute to the \(\sim \)160-day signal appearing in \(C_{20}\). Since the dominant contribution to the GRACE estimate of \(C_{20}\) is from the global positioning system tracking data, a time series of 138 monthly solutions up to degree and order 10 (\(10\times 10\)) were derived along with estimates of ocean tide parameters up to degree 6 for eight major tides. The results show that the \(\sim \)160-day signal remains in the \(C_{20}\) time series. Consequently, the anomalous signal in GRACE \(C_{20}\) cannot be attributed to aliasing from the errors in the S2 tide. A preliminary analysis of the cross-track forces acting on GRACE and the cross-track component of the accelerometer data suggests that a temperature-dependent systematic error in the accelerometer data could be a cause. Because a wide variety of science applications relies on the replacement values for \(C_{20}\), it is essential that the SLR estimates are as reliable as possible. An ongoing concern has been the influence of higher degree even zonal terms on the SLR estimates of \(C_{20}\), since only \(C_{20}\) and \(C_{40}\) are currently estimated. To investigate whether a better separation between \(C_{20}\) and the higher-degree terms could be achieved, several combinations of additional SLR satellites were investigated. In addition, a series of monthly gravity field solutions (\(60\times 60\)) were estimated from a combination of GRACE and SLR data. The results indicate that the combination of GRACE and SLR data might benefit the resonant orders in the GRACE-derived gravity fields, but it appears to degrade the recovery of the \(C_{20}\) variations. In fact, the results suggest that the poorer recovery of \(C_{40}\) by GRACE, where the annual variation is significantly underestimated, may be affecting the estimates of \(C_{20}\). Consequently, it appears appropriate to continue using the SLR-based estimates of \(C_{20}\), and possibly also \(C_{40}\), to augment the existing GRACE mission.  相似文献   

10.
We analyze the high-resolution dilatation data for the October 2013 \(M_w\) 6.2 Ruisui, Taiwan, earthquake, which occurred at a distance of 15–20 km away from a Sacks–Evertson dilatometer network. Based on well-constrained source parameters (\(\hbox {strike}=217^\circ \), \(\hbox {dip}=48^\circ \), \(\hbox {rake}=49^\circ \)), we propose a simple rupture model that explains the permanent static deformation and the dynamic vibrations at short period (\(\sim \)3.5–4.5 s) for most of the four sites with less than 20 % of discrepancies. This study represents a first attempt of modeling simultaneously the dynamic and static crustal strain using dilatation data. The results illustrate the potential for strain recordings of high-frequency seismic waves in the near-field of an earthquake to add constraints on the properties of seismic sources.  相似文献   

11.
The present paper deals with the least-squares adjustment where the design matrix (A) is rank-deficient. The adjusted parameters \(\hat x\) as well as their variance-covariance matrix ( \(\sum _{\hat x} \) ) can be obtained as in the “standard” adjustment whereA has the full column rank, supplemented with constraints, \(C\hat x = w\) , whereC is the constraint matrix andw is sometimes called the “constant vector”. In this analysis only the inner adjustment constraints are considered, whereC has the full row rank equal to the rank deficiency ofA, andAC T =0. Perhaps the most important outcome points to the three kinds of results
  1. A general least-squares solution where both \(\hat x\) and \(\sum _{\hat x} \) are indeterminate corresponds tow=arbitrary random vector.
  2. The minimum trace (least-squares) solution where \(\hat x\) is indeterminate but \(\sum _{\hat x} \) is detemined (and trace \(\sum _{\hat x} \) corresponds tow=arbitrary constant vector.
  3. The minimum norm (least-squares) solution where both \(\hat x\) and \(\sum _{\hat x} \) are determined (and norm \(\hat x\) , trace \(\sum _{\hat x} \) corresponds tow?0
  相似文献   

12.
Proper understanding of how the Earth’s mass distributions and redistributions influence the Earth’s gravity field-related functionals is crucial for numerous applications in geodesy, geophysics and related geosciences. Calculations of the gravitational curvatures (GC) have been proposed in geodesy in recent years. In view of future satellite missions, the sixth-order developments of the gradients are becoming requisite. In this paper, a set of 3D integral GC formulas of a tesseroid mass body have been provided by spherical integral kernels in the spatial domain. Based on the Taylor series expansion approach, the numerical expressions of the 3D GC formulas are provided up to sixth order. Moreover, numerical experiments demonstrate the correctness of the 3D Taylor series approach for the GC formulas with order as high as sixth order. Analogous to other gravitational effects (e.g., gravitational potential, gravity vector, gravity gradient tensor), numerically it is found that there exist the very-near-area problem and polar singularity problem in the GC east–east–radial, north–north–radial and radial–radial–radial components in spatial domain, and compared to the other gravitational effects, the relative approximation errors of the GC components are larger due to not only the influence of the geocentric distance but also the influence of the latitude. This study shows that the magnitude of each term for the nonzero GC functionals by a grid resolution 15\(^{{\prime } }\,\times \) 15\(^{{\prime }}\) at GOCE satellite height can reach of about 10\(^{-16}\) m\(^{-1}\) s\(^{2}\) for zero order, 10\(^{-24 }\) or 10\(^{-23}\) m\(^{-1}\) s\(^{2}\) for second order, 10\(^{-29}\) m\(^{-1}\) s\(^{2}\) for fourth order and 10\(^{-35}\) or 10\(^{-34}\) m\(^{-1}\) s\(^{2}\) for sixth order, respectively.  相似文献   

13.
The study areas Tikovil and Payppara sub-watersheds of Meenachil river cover 158.9 and 111.9 km2, respectively. These watersheds are parts of Western Ghats, which is an ecologically sensitive region. The drainage network of the sub-watersheds was delineated using SOI topographical maps on 1:50,000 scale using the Arc GIS software. The stream orders were calculated using the method proposed by Strahler's (1964 Strahler, A. N. 1964. “Quantitative geomorphology of drainage basins and channel networks”. In Hand book of applied hydrology. Vol. 4, Edited by: Chow, V. T. Vol. 4, 3944.  [Google Scholar]). The drainage network shows that the terrain exhibits dendritic to sub-dendritic drainage pattern. Stream order ranges from the fifth to the sixth order. Drainage density varies between 1.69 and 2.62 km/km2. The drainage texture of the drainage basins are 2.3 km–1 and 6.98 km–1 and categorized as coarse to very fine texture. Stream frequency is low in the case of Payappara sub-watershed (1.78 km–2). Payappara sub-watershed has the highest constant of channel maintenance value of 0.59 indicating much fewer structural disturbances and fewer runoff conditions. The form factor value varies in between 0.42 and 0.55 suggesting elongated shape formed for Payappara sub-watershed and a rather more circular shape for Tikovil sub-watershed. The mean bifurcation ratio (3.5) indicates that both the sub-watersheds are within the natural stream system. Hence from the study it can be concluded that GIS techniques prove to be a competent tool in morphometric analysis.  相似文献   

14.
Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density, $N_m \mathrm{F2}$ N m F 2 , and the height, $h_m \mathrm{F2}$ h m F 2 . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve $N_m \mathrm{F2}$ N m F 2 and $h_m \mathrm{F2}$ h m F 2 values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between $0.5\times 10^{10}$ 0.5 × 10 10 and $3.6\times 10^{10}$ 3.6 × 10 10 elec/m $^{-3}$ ? 3 for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height ( $\sim $ 2 %).  相似文献   

15.
The study shows that leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of LAI and LCC. We tested the utility of univariate techniques involving narrow band vegetation indices and the red edge inflection point, as well as multivariate calibration techniques, including stepwise multiple linear regression and partial least squares regression. Among the various investigated models, CCC was estimated with the highest accuracy (, ). All methods failed to estimate LCC (), while LAI was estimated with intermediate accuracy ( values ranged from 0.49 to 0.69). Compared with narrow band indices and red edge inflection point, stepwise multiple linear regression generally improved the estimation of LAI. The estimations were further improved when partial least squares regression was used. When a subset of wavelengths was analyzed, it was found that partial least squares regression had reduced the error in the retrieved parameters. The results of the study highlight the significance of multivariate techniques, such as partial least squares regression, rather than univariate methods such as vegetation indices in estimating heterogeneous grass canopy characteristics.  相似文献   

16.
The LLL algorithm, introduced by Lenstra et al. (Math Ann 261:515–534, 1982), plays a key role in many fields of applied mathematics. In particular, it is used as an effective numerical tool for preconditioning the integer least-squares problems arising in high-precision geodetic positioning and Global Navigation Satellite Systems (GNSS). In 1992, Teunissen developed a method for solving these nearest-lattice point (NLP) problems. This method is referred to as Lambda (for Least-squares AMBiguity Decorrelation Adjustment). The preconditioning stage of Lambda corresponds to its decorrelation algorithm. From an epistemological point of view, the latter was devised through an innovative statistical approach completely independent of the LLL algorithm. Recent papers pointed out some similarities between the LLL algorithm and the Lambda-decorrelation algorithm. We try to clarify this point in the paper. We first introduce a parameter measuring the orthogonality defect of the integer basis in which the NLP problem is solved, the LLL-reduced basis of the LLL algorithm, or the $\Lambda $ -basis of the Lambda method. With regard to this problem, the potential qualities of these bases can then be compared. The $\Lambda $ -basis is built by working at the level of the variance-covariance matrix of the float solution, while the LLL-reduced basis is built by working at the level of its inverse. As a general rule, the orthogonality defect of the $\Lambda $ -basis is greater than that of the corresponding LLL-reduced basis; these bases are however very close to one another. To specify this tight relationship, we present a method that provides the dual LLL-reduced basis of a given $\Lambda $ -basis. As a consequence of this basic link, all the recent developments made on the LLL algorithm can be applied to the Lambda-decorrelation algorithm. This point is illustrated in a concrete manner: we present a parallel $\Lambda $ -type decorrelation algorithm derived from the parallel LLL algorithm of Luo and Qiao (Proceedings of the fourth international C $^*$ conference on computer science and software engineering. ACM Int Conf P Series. ACM Press, pp 93–101, 2012).  相似文献   

17.
We propose an approach for calibrating the horizontal tidal shear components [(differential extension (\(\gamma _1\)) and engineering shear (\(\gamma _2\))] of two Sacks–Evertson (in Pap Meteorol Geophys 22:195–208, 1971) SES-3 borehole strainmeters installed in the Longitudinal Valley in eastern Taiwan. The method is based on the waveform reconstruction of the Earth and ocean tidal shear signals through linear regressions on strain gauge signals, with variable sensor azimuth. This method allows us to derive the orientation of the sensor without any initial constraints and to calibrate the shear strain components \(\gamma _1\) and \(\gamma _2\) against \(M_2\) tidal constituent. The results illustrate the potential of tensor strainmeters for recording horizontal tidal shear strain.  相似文献   

18.
We present results from a new vertical deflection (VD) traverse observed in Perth, Western Australia, which is the first of its kind in the Southern Hemisphere. A digital astrogeodetic QDaedalus instrument was deployed to measure VDs with \({\sim }\)0.2\(''\) precision at 39 benchmarks with a \({{\sim }}1~\hbox {km}\) spacing. For the conversion of VDs to quasigeoid height differences, the method of astronomical–topographical levelling was applied, based on topographical information from the Shuttle Radar Topography Mission. The astronomical quasigeoid heights are in 20–30 mm (RMS) agreement with three independent gravimetric quasigeoid models, and the astrogeodetic VDs agree to 0.2–0.3\(''\) (north–south) and 0.6–0.9\(''\) (east–west) RMS. Tilt-like biases of \({\sim }1\,\,\hbox {mm}\) over \({\sim }1\,\,\hbox {km}\) are present for all quasigeoid models within \({\sim }20\,\,\hbox {km}\) of the coastline, suggesting inconsistencies in the coastal zone gravity data. The VD campaign in Perth was designed as a low-cost effort, possibly allowing replication in other Southern Hemisphere countries (e.g., Asia, Africa, South America and Antarctica), where VD data are particularly scarce.  相似文献   

19.
This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree $4\times 4$ coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993–2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008–2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 $50\times 50$ series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.  相似文献   

20.
Error analysis of the NGS’ surface gravity database   总被引:1,自引:1,他引:0  
Are the National Geodetic Survey’s surface gravity data sufficient for supporting the computation of a 1 cm-accurate geoid? This paper attempts to answer this question by deriving a few measures of accuracy for this data and estimating their effects on the US geoid. We use a data set which comprises ${\sim }1.4$ million gravity observations collected in 1,489 surveys. Comparisons to GRACE-derived gravity and geoid are made to estimate the long-wavelength errors. Crossover analysis and $K$ -nearest neighbor predictions are used for estimating local gravity biases and high-frequency gravity errors, and the corresponding geoid biases and high-frequency geoid errors are evaluated. Results indicate that 244 of all 1,489 surface gravity surveys have significant biases ${>}2$  mGal, with geoid implications that reach 20 cm. Some of the biased surveys are large enough in horizontal extent to be reliably corrected by satellite-derived gravity models, but many others are not. In addition, the results suggest that the data are contaminated by high-frequency errors with an RMS of ${\sim }2.2$  mGal. This causes high-frequency geoid errors of a few centimeters in and to the west of the Rocky Mountains and in the Appalachians and a few millimeters or less everywhere else. Finally, long-wavelength ( ${>}3^{\circ }$ ) surface gravity errors on the sub-mGal level but with large horizontal extent are found. All of the south and southeast of the USA is biased by +0.3 to +0.8 mGal and the Rocky Mountains by $-0.1$ to $-0.3$  mGal. These small but extensive gravity errors lead to long-wavelength geoid errors that reach 60 cm in the interior of the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号