首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
南非西布什维尔德杂岩体铂、钯、金区域地球化学测量   总被引:5,自引:1,他引:4  
张洪  陈方伦  D. De Bruin 《物探与化探》1998,22(5):360-370,359
利用南非勒斯滕堡地区区域地球化学测量水系沉积物和土壤样品,采用化学光谱法测定Pt、Pd和Au三种元素,对该区布什维尔德杂岩体铂、钯和金进行区域地球化学勘查,发现新的铂族矿(带)异常,在主带上部和上部带底部发现新的Pt、Pd和Au的异常带。  相似文献   

2.
Connectivity between the western and eastern limbs of the Bushveld Complex   总被引:1,自引:0,他引:1  
The mafic layered rocks of the Bushveld Complex are 6–8 km thick and crop out over an area of 65,000 km2. Previous interpretations of the Bouguer gravity anomalies suggested that the intrusion consisted of two totally separate bodies. However, the mafic sequences in these arcuate western and eastern limbs are remarkably similar, with at least six petrologically distinctive layers and sequences being recognisable in both limbs. Such similarity of sequences in two totally discrete bodies 200–300 km apart is petrologically implausible, and it is suggested that they formed within a single lopolithic intrusion.

All previous Bouguer gravity models failed to consider the isostatic response of the crust to emplacement of this huge mass of mafic magma. Isostatic adjustment as a result of this intrusion would have caused the base of the crust to be depressed by as much as 6 km. With this revised whole crustal model, it becomes possible to construct a gravity model, consistent with observed data, which includes a 6 km-thick sequence of mafic rocks connecting the western and eastern limbs of the Bushveld Complex. The exact depth at which the mafic rocks of the Bushveld Complex lie in the centre of the structure cannot be constrained by the gravity data.

Such a first-order model is an approximation, because there have been subsequent deformation and structural readjustments in the crust, some of them probably related to the emplacement of the Bushveld Complex. Specifically, the observed geometry of the rocks around the Crocodile River, Dennilton, Marble Hall and Malope Domes suggests that major upwarping of the crust occurred on a variety of scales, triggered by emplacement of the Bushveld Complex.  相似文献   


3.
The north-northwest-south-southeast striking Rustenburg Fault Zone in the western Transvaal Basin, South Africa, has been extensively mapped in order to unravel its tectonic history. In post-Pretoria Group times, but before the intrusion of the Bushveld Complex at 2050 Ma, the area surrounding the fault zone was subjected to two compressive deformational events. The shortening direction of the first event was directed northeast-southwest, producing southeast-northwest trending folds, and the shortening direction of the second was directed north-northwest - south-southeast, producing east-northeast - west-southwest trending folds. The second set of folds refolded the first set to form typical transitional Type 1-Type 2 interference folding. This compression ultimately caused reactivation of the Rustenburg Fault, with dextral strike-slip movement displacing the Pretoria Group sediments by up to 10.6 km. The subsequent intrusion of the Bushveld Complex intensely recrystallised, and often ponded against the strata along the fault zone. The fault rocks within the fault zone were also recrystallised, destroying any pre-existing tectonic fabric. Locally, the fault zone may have been assimilated by the Bushveld Complex. After the intrusion of the Bushveld Complex, little movement has occurred along the fault, especially where the fault passes under areas occupied by the Bushveld Complex. It is thought that the crystallisation of the Bushveld Complex has rheologically strengthened the neighbouring strata, preventing them from being refaulted. This model is at variance with previous assumptions, which suggest that continuous regional extension during Pretoria Group sedimentation culminated in the intrusion of the Bushveld Complex.  相似文献   

4.
5.
A major question concerning the Bushveld Complex is the relationship between the layered mafic rocks and the overlying Rooiberg Group felsites and related granophyres. Here, we assemble bulk-rock analyses to gain insight into this question and investigate the petrogenesis of the felsic rocks. The data indicate that the Rooiberg Group consists of distinctive magnesian and ferroan lavas. The former dominates the basalts to rhyolites of the basal Dullstroom Formation, while nearly all the dacites to rhyolites of the overlying Damwal, Kwaggasnek, and Schrikkloof Formations are ferroan. The ferroan rocks also include the Stavoren Granophyre, which exists regionally as a several-hundred-meter-thick concordant sheet between the Bushveld Complex and Rooiberg lavas. The compositions of the magnesian lavas are similar to calc-alkaline granitoids found in convergent margins, suggesting that the lavas could have originated in a mantle affected by previous Archean subduction events that are recorded by xenoliths and inclusions in diamonds from most Kaapvaal kimberlites. In contrast, the compositions of the ferroan lavas indicate formation by fractional crystallization of basaltic liquids and are essentially identical to ferroan rhyolites associated with mafic rocks from other settings. The hypothesis that these rocks are fractional crystallization products of Bushveld mafic liquids is consistent with published radiogenic and stable isotope data and known age relations. Based on compositional characteristics and geologic relations, the Stavoren Granophyre is the most likely candidate for the residual liquid that escaped from the top of the Bushveld Complex. Whether the bulk of the Bushveld Province ferroan rhyolites formed in the chamber of the extant layered mafic sequence or in a deeper, hidden crustal magma reservoir remains unclear.  相似文献   

6.
总结南非布什维尔德杂岩体中Merensky Reef(简称MR矿层)和Platreef(简称PR接触带)两类铂族元素矿床的矿床地质、矿化特征以及铂族元素的赋存状态。MR矿床是典型的层状铂族元素(PGE)矿床,在杂岩体东部和西部发育,PGE总含量稳定,赋存在堆晶间隙硫化物中,常以PGE硫化物的形式产出。PR接触带型矿化集中在杂岩体北段,整体上不连续,各个矿床的具体特征由于底盘岩性的多变而不同,PGE主要赋存在碲化物和砷化物等半金属化合物中,可以脱离硫化物产在硅酸盐矿物中。相关的实验研究显示,PGE在岩浆结晶过程中发生分异,Pd/Ir比值体现了硫化物的分异程度;Pd比Pt更容易被氧化以及在热液中迁移,Pt/Pd比值体现了混染和热液的作用,这些因素造成了PR接触带与MR矿层中PGE赋存状态的差异。岩浆可能在侵入之前已经达到了硫饱和,岩浆房的压力变化和岩浆通道对于PGE的富集有重要意义,热液流体可以对已经形成的PGE矿化进行改造。  相似文献   

7.
Palaeomagnetic data were acquired from eighteen sampling sites situated in the main zone of the eastern Bushveld Complex, Transvaal, South Africa. Specimens were subjected to alternating field and thermal demagnetization. Two mean magnetization directions, which are approximately antipodal, were found. One direction represents subzone B of the main zone in the eastern Bushveld Complex and yields a palaeomagnetic pole at . The second direction represents subzone C of the main zone in the eastern Bushveld Complex with virtual geomagnetic pole at . The positions of these poles on the apparent polar wander path (APW) for Africa indicate that the critical zone had acquired its remanent magnetization before the main zone. Fold tests prove that the main zone in the eastern Bushveld Complex had acquired its remanent magnetization with the igneous layering in a horizontal position.  相似文献   

8.
An area of 324 km2 was selected for a pilot-study of the geochemical characteristics of the Bushveld granites in the Potgietersrus tin-field. Two hundred and sixty nine samples were collected from a regular grid of stations. Additional samples collected from selected sample stations provide data on “about station” variance to test the validity of conclusions based on regional variation. The samples were analysed for Ba, Ce, Co, La, Li, Nb, Ni, Rb, Sc, Sn, Sr, Ti, Y, Zn and Zr together with the major elements Ca, Na and K.The stratiform Bushveld granites have mean concentrations for these elements that compare closely with those in low Ca-granites. Ce, La, Rb, Y, Zn and Zr are enriched relative to low Ca-granites while Sr is markedly impoverished. The stanniferous Bobbejaankop granite stock is distinguished from the stratiform granites with respect to Ba, Sr, Ti and Zn. The median tin concentration in the stratiform granites is 6.5 ppm and in the Bobbejaankop granite it is 9 ppm. Economically viable deposits of tin disseminated through the upper 120 m of the Bobbejaankop granite stock have been exploited for over 70 years.It is concluded that the Bobbejaankop granite crystallized at low temperatures from a hydrous residual melt that had collected beneath a roof of felsite and early crystallization products of the original granitic magma. The presence of this concentration of volatile-rich, hydrous liquid depressed the melting temperatures of the quasi-solid, granitic crystal much below the ambient temperature initiating re-mobilization. The enrichment in Sn of the stratiform granites in the Potgietersrus area is compared with the “normal” (i.e., ± 3 ppm) Sn-content of the Bushveld stratiform granites building the Sekukuni Plateau in the eastern lobe of the Bushveld Complex where no tin mineralization has been reported.  相似文献   

9.
The Archean basement in the northeastern part of the Kaapvaal craton is intruded by a large number of mafic dykes, defining three major dyke swarms, which collectively appear to fan out from the Bushveld Complex. Herein we present U–Pb baddeleyite ages for two of these dyke swarms, the northwest trending Badplaas Dyke Swarm and the east-west trending Rykoppies Dyke Swarm, and infer their correlation with tectonic events in the Kaapvaal craton. We also present a U–Pb baddeleyite age for a noritic phase of the Marginal Zone of the Rustenburg Layered Suite (Bushveld Complex).  相似文献   

10.
The Late Archaean-Early Proterozoic Transvaal Sequence is preserved within the Transvaal, Kanye and Griqualand West basins, with the 2050 Ma Bushveld Complex intrusive into the upper portion of the succession within the Transvaal basin. Both Transvaal and Bushveld rocks are extensively mineralized, the former containing large deposits of iron, manganese, asbestos, andalusite, gold, fluorine, lead, zinc and tin ores, and the latter some of the World's major occurrences of PGE, chromium and vanadium ores. Transvaal sedimentation began with thin, predominantly clastic sedimentary rocks (Black Reef-Vryburg Formations) which grade up into a thick package of carbonate rocks and BIF (Chuniespoort-Ghaap-Taupone Groups). These lithologies reflect a carbonate-BIF platform sequence which covered much of the Kaapvaal craton, in reaction to thermal subsidence above Ventersdorp-aged rift-related fault systems. An erosional hiatus was followed by deposition of the clastic sedimentary rocks and volcanics of the Pretoria-Postmasburg-Segwagwa Groups within the three basins, under largely closed-basin conditions. An uppermost predominantly volcanic succession (Rooiberg Group-Loskop Formation) is restricted to the Transvaal basin. A common continental rift setting is thought to have controlled Pretoria Group sedimentation, Rooiberg volcanism and the intrusion of the mafic rocks of the Rustenburg Layered Suite of the Bushveld Complex. The dipping sheets of the Rustenburg magmas cut across the upper Pretoria Group stratigraphy and lifted up the Rooiberg lithologies to form the roof to the complex. Subsequent granitic rocks of the Lebowa and Rashoop Suites of the Bushveld Complex intruded both upper Rustenburg rocks and the Rooiberg felsites.  相似文献   

11.
Mineralogy and Petrology - Published studies dealing with the process mineralogy of Pt mines on the Bushveld Complex is generally limited to the Western Bushveld. The recognition by mine management...  相似文献   

12.
The regional distribution and chemical composition of massive and disseminated chromitites through a Platreef sequence and along a strike distance of over ∼20 km were investigated to correlate them both within the framework of the northern limb and to the eastern and western limbs of the Bushveld Complex. The chromitite layers and seams of the Platreef form two main chromite-bearing zones: the Upper Chromitite that occurs as two to three discontinuous seams in feldspathic pyroxenite at approximately 20 m below the Platreef top contact and the Lower Chromitite that is composed of multiple seams in feldspathic harzburgite, pyroxenite and norite close to the bottom contact of the Platreef with footwall. Electron micro-probe analyses reveal that the chemical composition of chromite depends on the host rock type. Norite and pyroxenite host chromite with the highest Cr2O3 content while harzburgite-hosted chromites are Cr and Mg poor. The wide range in chromite compositions is explained by the influence of late-magmatic processes including post-cumulus growth and re-equilibration, interaction with fluid- and sulphide-saturated magmatic liquid and contact metamorphism. Each of these processes is characterised by its own distinct geochemical signature, but generally they lead to a decrease in Mg and Al and an increase in both di- and tri-valent Fe in the chromite. The occurrence of chromitite locally on the different distance from the contact between the upper Platreef sills and the overlying Main Zone magma suggests erosion of the upper Platreef by the Main Zone as it was emplaced. The localisation of chromitites supports an independent development of the northern limb during the Critical Zone emplacement although the chemical composition of chromite and co-existing silicates from ultramafic rocks suggest a Critical Zone affinity with the eastern and western limbs of the Bushveld Complex.  相似文献   

13.
The three-dimensional shapes of mafic layered intrusions have to be inferred from surface outcrops, in some cases aided by drilling and/or geophysical data. However, geophysical models are often equivocal. For the 2.06?Ga Bushveld Complex of South Africa, early geological models proposed a shape of a single, gently inward dipping lopolith. Subsequent resistivity and gravity data were interpreted to suggest that the eastern and western limbs were discrete, dipping wedge-shaped intrusions separated by ~150?km. A more recent gravity model that takes crustal flexure into account allows continuity and the reversal to the original model. Distinguishing between these possibilities is difficult from surface-based studies because the central regions of the Complex are obscured by large volumes of younger granites and sedimentary/volcanic cover rocks. Here, we describe xenoliths from the Cretaceous Palmietgat kimberlite pipe, located mid-way between the exposed western and eastern lobes of the Complex. They are chromite-bearing feldspathic pyroxenites considered equivalent to those of the typical outcropping Critical Zone of the Bushveld Complex. This result provides strong support for a regionally interconnected Bushveld Complex, implying its emplacement as a single sill-like body. Confirming the continuity of the Bushveld Complex greatly expands exploration opportunities and implies that other layered mafic intrusions could have similar geometry.  相似文献   

14.
Detailed geological mapping, core logging and petrographic analysis are supplemented with geochemical data to evaluate the petrogenesis of the Upper Group (UG1, UG2) stratiform chromitite seams in the Dwars River area, Bushveld Complex. Seven important and widespread features of UG1 and UG2 chromitite are addressed: (1) chromitite seams are dissociated from specific silicate successions and enclosed in Cr-rich silicates with a common genetic origin, (2) chromitite seams cut structures and textures in host silicates, have vein-like structures and host xenoliths, (3) chromitite seams are braided, (4) chromite grain distributions suggest flow segregation, (5) silicates in chromitite seams have modal proportions, forms and compositions different from those in binding silicate rocks, (6) PGE distributions in UG2 chromitite suggest flow segregation, and (7) chromitite seams are bound by coarse-grained silicates possibly formed through contact heating and/or de-volatization. These features are integrated into a model whereby UG chromitite seams developed from the intrusion of chromite crystal slurries. This model proposes that chromite grains first accumulated within structural traps of the Bushveld conduits, and that these accumulations were then re-mobilized with silicate melt (± sulfides and/or fluids?) to spread laterally as chromite crystal slurries within the layered ultramafic-mafic cumulates of the Bushveld Complex.  相似文献   

15.
Volcanic rocks of the Rooiberg Group are preserved in the floor and roof of the mafic Rustenburg Layered Suite of the Bushveld Complex. Field and geochemical characteristics of these volcanic rocks imply that they are genetically related to the Rustenburg Layered Suite. Four major ore-forming events are identified in the Rooiberg Group. The first phase was accompanied by volcanic hosted, fault controlled, hydrothermal copper mineralisation, which is found in the lowermost portion of the Rooiberg Group, underlying the Rustenburg Layered Suite. This type of mineralisation is tentatively linked to initial Rustenburg Layered Suite intrusions. Stratabound arsenic mineralisation that possibly formed in response to contact metamorphism, characterises the second phase, and occurred after extrusion of the Damwal Formation, possibly due to shallow granophyric intrusion. The third mineralising event occurred in response to contact metamorphism during the final stages of the Rustenburg Layered Suite, where especially Pb and Zn were introduced into the felsite roof rocks. This type of mineralisation affected the majority of the Rooiberg Group, but is most pronounced towards the contact with the Rustenburg Layered Suite. The fourth phase is restricted to the Rooiberg Group in the Nylstroom area and is linked to the granite intrusions of the Lebowa Granite Suite, from which Sn and F were introduced into the uppermost felsite succession. Mineralisation in the Rooiberg Group appears to be controlled by the character and intrusion level of the associated Bushveld magmas. Different styles of mineralisation in Rooiberg Group volcanic rocks are encountered at various stratigraphic levels. Major primary volcanogenic ore deposits appear to be absent.  相似文献   

16.
The postcumulus evolution of a portion of the Bushveld Complex that includes the Merensky reef is inferred from the study of a continuous 56 m drill core. The core penetrated the basal orthopyroxenites of the Merensky and Bastard units, the massive anorthosites overlying the two pyroxenites and about 10 m of norite underlying the Merensky pyroxenite. Detailed profiles of major, minor and rare earth element (REE) contents of clinopyroxene and orthopyroxene were determined by electron and ion probe. Good correlations exist between textural and lithological variations and the REE contents of the pyroxenes. Specifically, enrichments in pyroxene REE abundances are observed in the basal pyroxenites of the Merensky and Bastard units relative to the underlying and overlying rocks. In the pyroxenites the Nd content of clinopyroxene is typically over 12 ppm and reaches nearly 40 ppm (≈90 × chondrite), and Nd/Yb ratio is in the range 8 to 25. These extreme enrichments in REE are not accompanied by large variations in major element contents. Computations of the compaction parameters relevant to the conditions of crystallization of the Bushveld Complex combined with a consideration of cooling history confirm the importance of compaction as a post-cumulus process. This analysis indicates that the geochemical variability is a result of redistribution of interstitial melt driven by compaction and cannot reflect variations in the initial porosity of the accumulating crystal pile. A model for the development of the Atok section is developed. The Merensky anorthosite is interpreted to have served as a barrier to the upward porous flow of late-stage, hydrous and incompatible-element enriched melt, which was thus trapped in the underlying Merensky pyroxenite. The flow was driven by compaction of the 350+ meter-thick section of predominantly norite beneath the anorthosite. The introduction and accumulation of this melt in the pyroxenite and subsequent cooling resulted in partial dissolution, recrystallization and REE enrichment of the rock forming minerals, and in the formation of the main lithologic features of the Merensky pyroxenite. Further upward percolation of the interstitial melt through the Merensky anorthosite was restricted to channels due to the relatively impermeable nature of the cemented anorthosite. This melt accumulated in and metasomatized the Bastard pyroxenite in the same manner as the Merensky pyroxenite, having again been trapped by the overlying Bastard anorthosite. Received: 10 July 1996 / Accepted: 27 February 1997  相似文献   

17.
Two major swarms of early Proterozoic (ca. 2.1 Ga) basic dykes occur within the Archaean craton of southern West Greenland. One swarm comprises ophitic and sub-ophitic tholeiitic dolerites, while the other (the BN dyke swarm) constitutes mainly norites in which pyroxenes and olivine are enclosed by plagioclase oikocrysts. The close geochemical similarity between a quenched norite and the coarser-grained varieties indicates that the composition of the latter type has not been significantly modified by crystal accumulation. The BN dykes are geochemically distinctive, most having high MgO (ca. 16%), Cr and Ni contents in conjunction with relatively high SiO2, light rare-earth (REE) and large ion lithophile (LIL) element concentrations. The texture, mineral chemistry and petrochemistry of the quenched noritic dyke all bear strong resemblances to those features in modern boninitic lavas. The BN dykes also correspond to proposed parental liquids of the Bushveld Complex and other major layered basic igneous intrusions. The two dyke swarms are petrogenetically distinct. The tholeiitic dolerites were derived from a relatively undepleted, primordial mantle while the noritic dykes originated from a metasomatized harzburgitic source. The wide-spread distribution of similar Proterozoic intrusions suggests crustal underplating by harzburgitic mantle on a world-wide scale at this time.  相似文献   

18.
Thirty separates of plagioclase, orthopyroxene and clinopyroxene from the lower Main Zone of the Northern Limb of the Bushveld Complex were analysed for their mercury contents using combustion atomic absorption spectroscopy with gold amalgamation pre-concentration. The average mercury contents of plagioclase, orthopyroxene and clinopyroxene were found to be 0.9 ppb, 1.2 ppb and 1.1 ppb, respectively. Mercury within the separates does not vary systematically with any of the major element oxides present in the minerals. Based on a positive 1:1 correlation between mercury in orthopyroxene and clinopyroxene, we estimate DOpxHg ≈ DCpxHg, and on this basis, can exclude the presence of significant Hg2+ within the melts from which these minerals crystallised. The lack of correlation between mercury in plagioclase and that in the mafic silicates may suggest diffusional loss of the element from the former during slow cooling under magmatic conditions and better retention of mercury by the mafic silicates under the same conditions. Alternatively and more likely, this lack of correlation may support earlier arguments based on distinct Sr-isotopic disequilibrium between co-existing plagioclase and mafic silicates, that plagioclase and the mafic silicates in the Northern Limb of the Bushveld Complex may have crystallised from different melts within a variably contaminated, sub-Bushveld staging chamber.  相似文献   

19.
Detailed mineralogical investigations of chromite in the Lower and Critical Zones in the northwestern sector of the Bushveld Complex have revealed significant compositional variations with regard to modal proportions, host-rock lithology, and stratigraphic height. Superimposed on these variations are long-range systematic trends in the composition of chromite in the massive layers. These long-range trends are closely linked with the evolution of the silicate cumulates. The massive chromitite layers are divided into two types. Type 1 comprises the chromitites hosted entirely within ultramafic cumulates, while Type 2 chromitites are within cyclic units in which plagioclase cumulates occur. The types are also distinguishable by their respective contents of platinum-group elements (PGEs) and distribution patterns thereof, viz. the ratios between Ru + Os + Ir and Pt + Pd + Rh, or relative element proportions, both of which display a systematic change with height in accordance with chromite composition. The relation between silicate geochemistry, chromite composition, and PGE tenor, leads to the development of a model explaining the formation of PGE-mineralized, sulphide-poor chromitite layers in the Critical Zone of the Bushveld Complex. Presented at the International Conference for Applied Mineralogy, Pretoria, September 1991  相似文献   

20.
The stratigraphy and geological position of the eastern compartment of the Bushveld Complex are described. A mechanical model for the initiation and growth of the eastern compartment of the Bushveld intrusion has been developed using thin elastic plate theory, assuming linked conical magma chambers. It is shown that the contribution to the pressure at the base of a cell by the restitutional force exerted by the roof of Rooiberg felsites is 104 times as great as that of the layers of host in the cone. Both are minimal compared to the lithostatic pressure exerted by the magma pile. Roof deformation is therefore seen to be a more important process than sagging of the floor during intrusion—a feature which probably occurred during cooling, solidification and isostatic readjustment of the area.A stratigraphie model is proposed in which the intrusion of basic rocks into the Transvaal sequence is discussed in the light of continuous basin subsidence. Early submarine sedimentation in an irregularly-floored basin some 620 km in diameter situated on the Archaean craton gave rise to a 7.7 km thick sedimentary pile, to which was added some 7 km of subaerial basalts and felsites. Depression of the floor of the basin into the regime of maximum horizontal compression induced favourable conditions for the intrusion of a total of 2.5 km of diabase sills which further assisted the subsidence. The 9 km thick Bushveld Complex was intruded into the basal sections at points along a 010° trend in a regime characterised by shear failure. Early magma influxes gave rise to a laminated marginal zone forming a shallow cone, with associated sill activity, whilst continued later influxes filled the conical cell, transgressed the floor and uparched the roof. Partial melting in the regions beneath the Complex, exacerbated by continued crustal depression, gave rise to the late Bushveld granites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号