首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The behaviour of the polar auroras in the dark part of the auroral oval during the solar flares has been examined. For the analysis 29 solar flares during spring and autumn periods when a part of the polar cap was sunlit were selected. It has been found that a sharp decreasing of the auroral arc luminosity occurred just after the solar flare onsets. Auroral arcs broke up into patches and in most cases disappeared in 2–3 min. Bright discrete auroras appeared again as a rule close to the maximum phase of the solar flares. The duration of polar aurora effects was typically from 4 to 13 min with median value of about 8 min. These effects have been observed inside the interval 18.00-04.00 M.L.T. during periods both of magnetic quiet and disturbance.For the large set of data magnetic field variations in the sunlit polar cap after the solar flare onset have been investigated. A simple model of the auroral processes for the qualitative explanation of the observed phenomenon has been suggested.  相似文献   

2.
In a quiet condition, the solar wind kinetic energy is converted into electrical energy. A small part of this energy is dissipated as heat energy in the polar ionosphere. We identify at least three types of magnetospheric disturbances which are not associated with an increase of the heat production and call them reversible disturbances, while the magnetospheric substorm is an irreversible disturbance which is associated with a large increase of the heat production.The magnetosphere appears to have an inherent internal instability by which a large amount of heat energy is sporadically produced in the polar upper atmosphere at the expense of the magnetic energy in the magnetotail. A positive feed-back process may be responsible for the growth of the instability and for the expansive phase, while the recovery phase sets in when some process begins to suppress the positive feed-back process.  相似文献   

3.
A small, isolated substorm with an expansion phase onset at 07:39 U.T. (±1 min) on 28 January 1983 was well observed by ground-based instrumentation as well as by low- and high-altitude spacecraft. This event period was chosen as a detailed analysis interval because of the comprehensive nature of the data coverage, and because ISEE-3 identified signatures within the distant tail (220 RE) following the substorm onset which had been interpreted as those of a plasmoid passage. In this paper we provide a comprehensive timeline of the growth, expansion, and recovery phases of the substorm. The magnetospheric energy input rates are evaluated using IMP-8 in the upstream solar wind. For the first time, DE-1 imaging sequences are used to examine auroral features during the growth and expansion phases while ISEE-3 was in the deep tail. Substorm current wedge location and expansion onset information was provided by ground-based magnetometer and geostationary orbit (particle and magnetic field) data. The plasma, energetic particle, and field signatures at ISEE-3 are considered within the framework of the near-Earth data sets. We quantitatively estimate substorm energy input and output relationships for this case and we evaluate the timing and physical dimensions of the distant tail disturbance implied by the global observations available. Overall, the present analysis provides a thorough documentation of a substorm to an unprecedented degree; most of the data support the developing paradigm of the near-Earth neutral line and plasmoid formation model. We also consider the boundary layer dynamics model of substorms as an alternative explanation of the global magnetospheric phenomena in this event, but as presented this model does not provide a superior organization of the available data sets.  相似文献   

4.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

5.
During the initial phase of magnetic storms with steep onset, the topside ionosphere shows enhancement of ionization above and depletion below a zone of unchanged ionization. During storms with a smoothly initiated disturbance, no enhancement of ionization is observed and depletion takes place at all altitudes.  相似文献   

6.
On 11 November 1976, after a magnetically quiet period with the interplanetary magnetic field (IMF) directed northward, a sudden southward turning of the IMF immediately led to a world-wide intensification of convection which was observed to start almost simultaneously at stations within the auroral zone and polar cap. The two-dimensional equivalent current system over the northern hemisphere had a typical two-cell convection pattern with a maximum disturbance of ΔH = ?300 nT observed on the morningside in the westward electrojet region. This enhancement of activity ended after 35 min in a localized substorm onset in the midnight sector over Scandinavia.The recordings made in this area indicate large fluctuations of various ionospheric parameters starting several minutes before the substorm onset. Two subsequent stages can be resolved: (1) high-energy particle precipitation recorded by balloon X-ray detectors and maximum ionospheric current density increase, while the electrojet halfwidth shrinks and the total electrojet current becomes weaker; (2) the maximum ionospheric current density stays constant and the high-energy particle precipitation decreases, while the auroral brightness increases and the total electrojet current and its half-width show a growing trend prior to the final breakup. A suggestion is made that the time interval of these two stages should be called “trigger phase”. A short discussion explains the trigger phase observations in a magnetospheric scale. The energy coupling between solar wind and magnetosphere during the pre-substorm phases is discussed by utilizing the energy coupling function ? defined by Perreault and Akasofu (Geophys. J. R. Astr. Soc.54, 547, 1978). The ? values appear to be on substorm level during the period of enhanced convection. A good correlation between ? and the growth of the Joule heating rate (estimated from the AE data) is found in the beginning, but during the last 20 min before substorm triggering ? is high while the Joule heating rate decreases. The behaviour of ? during the two stages of the trigger phase suggests that the start of the trigger phase is purely internally controlled while the length of the trigger phase and the final substorm onset may be influenced by the variation in ?.  相似文献   

7.
The proposed ionospheric storm model is based on a heat source located at magnetic noon on Feldstein's auroral oval. The rotation of the Earth produces an apparent motion of the source which is greater than the speed of the disturbance. This gives rise to a wake or front which sweeps over the globe and determines the onset time of the negative phase which results from a change in chemical composition. At the front, focussing will occur which accounts for the sudden drop in electron density (or contents) sometimes observed. The calculated onset times of the negative phase are compared with observations for a number of storms. The local onset times vary from 12 at the latitude of the source to around 24 at 10° geomagnetic latitude. This model predicts that the onset of the negative phase at a given location, for storm which commence between about 2000 LT to about 1000 LT, is independent of the time of storm commencement.  相似文献   

8.
Changes in the configuration of the geomagnetic tail are known to play a fundamental role in magnetospheric substorms. Observations with the UCLA magnetometer on the eccentric orbiter OGO-5 indicate that the most pronounced changes in the midnight meridian occur in the cusp between 8 and 11 Re. In order to organize the observations it is necessary to separate effects on the tail due to the solar wind magnetic field and effects due to substorms. Provided there are no changes in the solar wind there are two distinct phases of a substorm in the near tail: a growth phase and an expansion phase. During each phase the observations depend on the location of the satellite relative to the plasma sheet boundaries. Far behind the Earth is the pure tail region which consists of the lobe and the plasma sheet. In the lobe the field magnitude is characteristically enhanced relative to the dipole. Closer to the Earth is a region of transition. The field magnitude is close to that of the dipole but its orientation is distorted forming a cusp-like field line. Near the Earth is a region of depressed field. Here the field magnitude is much less than that of the dipole, but its orientation is similar. The growth phase of a substorm appears to be the direct consequence of the onset of a southward solar wind magnetic field. In the pure tail region the lobe field begins to increase in magnitude and the plasma sheet thins. The transition region moves earthward and the field lines become more tail-like as the field magnitude increases. In the inner region of depressed field, the field magnitude decreases rapidly. The onset of the expansion phase appears to be a process internal to the magnetosphere and independent of the solar wind. In the depressed field region there is a rapid, turbulent increase in field magnitude. In the transition region there is a sudden decrease in the field magnitude and a return to dipolar orientation. In the tail region the plasma sheet expands rapidly with the field becoming quite dipolar, decreasing slowly in the lobe of the tail.  相似文献   

9.
It is suggested that changes in the electric field in the night-side auroral zone and polar cap observed during the expansion phase of a substorm are related to a change in the magnetospheric flow pattern. During the substorm growth phase the flow appears to be fairly uniform across the width of the magnetosphere (uniform electric field across the tail), while at expansion the observations are consistent with the magnetospheric potential drop in the tail falling across a narrow region near the dusk magnetopause. Such non-uniform electric fields in the tail have been predicted by recent theoretical work. A rather speculative interpretation of events during a magnetospheric substorm is presented.  相似文献   

10.
High latitude magnetic field data from 16 northern observatories are averaged during periods of magnetic disturbance level Kp = 2? to 3+. Within this disturbance level, variations between interplanetary magnetic field sector (toward and away from the Sun) and geomagnetic season (dipole latitude of the Sun: > 10° = summer, < ? 10° = winter) are delineated. Variations between seasons are: (1) The positive bay and polar cap disturbance is a maximum in summer and a minimum in winter for both sectors. (2) The negative bay disturbance is a maximum in summer and a minimum in winter when the interplanetary field is toward the Sun and vice versa during away sectors. Variations between sectors are: (1) During summer and equinox the negative bay disturbance is greater for toward sectors than for away sectors. The reverse occurs during winter. (2) The positive bay disturbance is greater during toward sectors than during away sectors for all seasons. (3) All diiferences in disturbance level are greater at sunlit local times than in darkness. (4) Angular differences in the direction of the horizontal disturbance of up to 75° occur between sectors in the polar cap and dayside during all seasons. (5) The polar cap-auroral belt boundary location is different for the two sectors. Compared to data from away sectors, this boundary for toward sectors is shifted northward near dawn (5–8h) and southward between 10 and 22h. (6) Accompanying this boundary difference there is a change in the direction of the vertical disturbance in the region between 9 and 14h at geomagnetic latitudes 77–88°. ΔZ in this region is negative during away sectors and positive during toward sectors. Differences between sectors are attributed to changes in the ionospheric electric field configuration and in the distribution of magnetic field aligned currents.Features unrelated to sector or season also occur: (1) A significant Y component is present in both the positive and negative bays. (2) The vertical disturbance (¦ΔZ¦) to the north of the auroral belt is much larger than that to the south. (3) Two distinct regions of maximum activity are present in the ΔZ accompanying the positive bay disturbance.  相似文献   

11.
High latitude solar magnetic fields   总被引:1,自引:0,他引:1  
Norman Murray 《Solar physics》1992,138(2):419-422
We use Kitt Peak magnetograms to measure polar magnetic fields. The polar mean absolute field increases at the same time as the polar mean field decreases. That is, the polar mean absolute field varies in phase with solar activity, in contrast to the out of phase variation of the mean polar field. We find that the polar fields have a large bipolar component even at solar minimum, with a magnitude equal to that found at low latitudes outside the active latitude bands.  相似文献   

12.
In this paper, analytical MHD studies are made on the propagation of oscillatory waves in a semi-infinite plasma which is exposed to an applied magnetic field. The oscillatory wave is introduced into the plasma environment by temperature perturbation.The phase speeds of the resultant disturbance are discussed in terms Grashof, Prandtl, and Eckert numbers (free-convection parameters), Hall parameter, Alfvén parameter, and frequences. Expansion about small Eckert number is made to solve the very nonlinear coupled partial differential equations for the field variables. The appearance of steady streaming at all times in the first order expansion is mentioned.  相似文献   

13.
From the world distribution of geomagnetic disturbance, the connection between the electric current in the ionosphere, the field-aligned current and asymmetric equatorial ringcurrent in the magnetosphere is discussed. The partial ring-current in the afternoon-evening region, whose intensity is closely correlated with the AE-index, usually develops and decays earlier than the symmetric ring-current in the course of magnetic storms. The partial ringcurrent seems to have a direct connection with the positive geomagnetic bay in high latitudes in the evening hours through the ionizing effect of the particles leaking from the partial ringcurrent. The dawn-to-dusk electric field in the magnetospheric tail is transferred to the polar ionosphere, producing there the twin vortex Hall current responsible for polar cap geomagnetic variation. The magnetic effect of the associated Pedersen current in the ionosphere is shown to be small but still worth considering. The electrojet near midnight along the auroral oval is thought to appear when the electric conductivity of the ionosphere is locally increased under the presence of large scale dawn-to-dusk electric field. The occasional appearance of a localized abnormal geomagnetic disturbance with reversed direction near the geomagnetic pole seems to suggest the occasional reversal of electric field near the outer surface of the magnetospheric tail, especially when the interplanetary magnetic field is northward.  相似文献   

14.
On the basis of the geomagnetic data of highlatitude arctic stations the development of polar magnetic substorms is examined. It is shown that there exist two current systems of the magnetic substorm: DP11 and DP12. 11 is a current system with one westelectrojet in the nighttime auroral zone. That system is peculiar to the break-up phase of a substorm. DP12 is a two-vortex current system in the polar cap with two auroral electrojets, eastward and westward, of about equal intensity. The DP12 system is typical for growth and recovery phases.There are two different types of substorm development. The first type is characterized by the DP12 system during the growth phase. The intensity of this current system increases until the explosive phase begins. The other type does not seem to be characterized by any distinct current system during the growth phase. The commencement of such a substorm is associated with a rapid explosive development of the DP12 system.A conclusion about the the different origins of the DP11 and DP12 current systems is made.  相似文献   

15.
The magnetic field lines of the corona associated with the solar-cycle surface general magnetic field are calculated by a potential-field approximation to study the solar-cycle evolution of the geometry of the coronal field. The surface field evolution used here is the radial field evolution, predicted by a model of the solar cycle driven by the dynamo action of the global convection, and justified observationally using Mount Wilson magnetic synoptic chart data. The evolution of the calculated coronal general field is now good for comparison with observations and shows the following. (i) The field of the polar and high-altitude corona has dipolar structure in almost all phases of the solar cycle except in a short time interval around maximum phase despite the quadrupolar structure of the general magnetic field at the surface; quadrupolar field forms loop-like structure in the lower corona. The almost-dipolar structure of the polar and high-latitude corona and the loop formation of the equatorial lower corona explain the appearance of the undisturbed minimum corona observed at eclipses. (ii) The polar field lines are directed almost radially at the minimum phase, which should be responsible for polar plumes. The field lines slowly open up to participate in the loop-like structure of the equatorial lower corona, and rapidly change their structure and polarity at the maximum phase, to resume the almost radial configuration slowly, (iii) During the rapidly changing maximum phase, the field lines do not penetrate deep into the interplanetary space resulting in the absence of polar plumes and the appearance of the circular corona- the maximum corona. In this phase, the coronal field should not be approximated by a dipole field. The surface field evolution which can explain such behaviors of the corona is characteristic of the solar-cycle process dominated by the latitudinal gradient of the differential rotation. If the radial gradient dominated in the subsurface process, the coronal evolution would look quite different and would show latitudinal propagation of enhancement of activity. Although nonaxisymmetric features should be superposed on the axisymmetric general field to express the real corona, the general field can be a basic coronal field in studying long-term interaction between the convection zone and the interstellar space especially in studying the magnetic braking of the solar rotation.  相似文献   

16.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

17.
We compare the shape and position of some plasma formations visible in the polar corona with the cyclic evolution of the global magnetic field. The first type of object is polar crown prominences. A two-fold decrease of the height of polar crown prominences was found during their poleward migration from the middle latitudes to the poles before a polar magnetic field reversal. The effect could be assigned to a decrease of the magnetic field scale. The second type of object is the polar plumes, ray like structures that follow magnetic field lines. Tangents to polar ray structures are usually crossed near some point, “a magnetic focus,” below the surface. The distance q between the focus and the center of the solar disk changes from the maximum value about 0.65 R at solar minimum activity to the minimum value about 0.45 R at solar maximum. At first glance this behaviour seems to be contrary to the dynamics of spherical harmonics of the global magnetic field throughout a cycle. We believe that the problem could be resolved if one takes into account not only scale changes in the global magnetic field but also the phase difference in the cyclic variations of large-scale and small-scale components of the global field.  相似文献   

18.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

19.
The current solar cycle minimum seems to have unusual properties that appear to be related to weak solar polar magnetic fields. We investigate signatures of this unusual polar field in the ecliptic near-Earth interplanetary magnetic field (IMF) for the STEREO period of observations. Using 1 AU OMNI data, we find that for the current solar cycle declining phase to minimum period the peak of the distribution for the values of the ecliptic IMF magnitude is lower compared to a similar phase of the previous solar cycle. We investigate the sources of these weak fields. Our results suggest that they are related to the solar wind stream structure, which is enhanced by the weak polar fields. The direct role of the solar field is therefore complicated by this effect, which redistributes the solar magnetic flux at 1 AU nonuniformly at low to mid heliolatitudes.  相似文献   

20.
We investigate the effects of two magnetic clouds on hourly cosmic-ray intensity profiles in the Forbush decrease events in November 2004 observed by 47 ground-based neutron-monitor stations. By using a wavelet decomposition, the start time of the main phase in a Forbush decrease event can be defined, and then clearer definitions of initial phase, main phase, and recovery phase are proposed. Our analyses suggest that the main phase of this Fd event precedes the arrival time of the first magnetic cloud by about three hours, and the Fds observed at the majority (39/47) of the stations were found to originate from the sheath region as indicated by large fluctuations in magnetic field vectors at 19:00 UT on 7 November 2004, regardless of the station location. In addition, about 45% of the onset times of the recovery phase in the Forbush decreases took place at 04:00 UT on 10 November, independent of the station position. The results presented here support the hypothesis that the sheath region between the shock and the magnetic cloud, especially the enhanced turbulent magnetic field, results in the scattering of cosmic-ray particles, and causes the following Forbush decreases. Analysis of variation profiles from different neutron monitors reveals the global simultaneity of this Forbush decrease event. Moreover, we infer that the interplanetary disturbance was asymmetric when it reached the Earth, inclined to the southern hemisphere. These results provide several observational constraints for more detailed simulations of the Forbush decrease events with time-dependent cosmic-ray modulation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号