首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高精度位置服务依赖模糊度正确固定的载波相位观测值,而复杂环境的相位周跳和中断给模糊度固定和数据处理带来了巨大挑战。北斗三号系统向全球播发四频和五频信号,为提升周跳处理性能提供了机遇。本文建立了探测多频超宽巷周跳的伪距-相位无几何组合模型,以及探测窄巷周跳的相位-相位无几何组合模型,并以周跳探测成功概率最大为准则确定了多频最优超宽巷和窄巷组合。由于电离层延迟制约了数据中断和电离层变化剧烈情况下的窄巷周跳探测,进而建立了顾及电离层延迟的窄巷周跳探测滤波模型。试验结果表明,对30 s采样间隔,基于无几何组合模型探测周跳的成功率均优于96%;对于3 min的数据中断,基于无几何组合模型的周跳探测成功率仅为70%,但补偿电离层延迟的滤波模型将成功率提升至95%以上。  相似文献   

2.
The network-based real-time kinematic (RTK) positioning has been widely used for high-accuracy applications. However, the precise point positioning (PPP) technique can also achieve centimeter to decimeter kinematic positioning accuracy without restriction of inter-station distances but is not as popular as network RTK for real-time engineering applications. Typically, PPP requires a long initialization time and continuous satellite signals to maintain the high accuracy. In case of phase breaks or loss of signals, re-initialization is usually required. An approach of instantaneous cycle slips fixing using undifferenced carrier phase measurements is proposed, which leads to instantaneous re-initialization for real-time PPP. In the proposed approach, various errors such as real-time orbit and clock errors, atmosphere delay and wind-up effects are first refined and isolated from integer cycle slips. The integer values of cycle slips can then be estimated and fixed with the LAMBDA technique by applying a cascade cycle slip resolution strategy. Numerical experiments with different user dynamics are carried out to allow a comprehensive evaluation of efficiency and robustness of the cycle slip fixing algorithm. The results show that the cycle slips can be fixed correctly in all cases considered and that data gaps of up to 300?s can be connected with high confidence. As a result, instantaneous re-initialization is achieved in the real-time PPP processing.  相似文献   

3.
相位伪距组合(1,-1)受多路径变化和电离层延迟的影响,周跳探测精度为2周,严重影响了传统相位伪距法的周跳探测性能。针对这一问题,利用基于抗差估计的Chebyshev多项式对各备选周跳的观测值进行拟合,依据残差和最小的原则,准确判别出原始相位的周跳值。实例验证该方法实用性强,可靠性高,相比传统相位伪距法具有更好的周跳探测与修复能力。  相似文献   

4.
高杰  谢建涛 《测绘工程》2016,25(12):25-31
BDS三频观测条件下可以组合得到具有优良特性的虚拟载波观测量,有利于改善非差观测数据的周跳实时探测与修复。文中提出一种基于BDS三频非差数据的周跳实时探测与修复模型:首先,采用消电离层无几何HMW组合观测量探测和修复EWL周跳;然后,将经过修复的EWL观测量与WL组合消除几何相关项,忽略电离层延迟残差进而确定WL周跳;最后采用经过修复的WL观测量与NL组合形成无几何观测量,并通过优化载波相位组合确定电离层延迟的变化量以探测和计算NL周跳,并通过简单变换得到原始载波观测量的周跳值。通过实测BDS三频数据对模型可行性进行验证分析,结果表明,即使在30s的采样率以及电离层活动活跃条件下,该模型都可有效实时探测和修复各类周跳。  相似文献   

5.
This paper develops a new automated cycle slip detection and repair method that is based on only one single dual-frequency GPS receiver. This method jointly uses the ionospheric total electron contents (TEC) rate (TECR) and Melbourne–Wübbena wide lane (MWWL) linear combination to uniquely determine the cycle slip on both L1 and L2 frequencies. The cycle slips are inferred from the information of ionospheric physical TECR and MWWL ambiguity at the current epoch and that at the previous epoch. The principle of this method is that when there are cycle slips, the MWWL ambiguity will change and the ionospheric TECR will usually be significantly amplified, the part of artificial TECR (caused by cycle slips) being significantly larger than the normal physical TECR. The TECR is calculated based on the dual-frequency carrier phase measurements, and it is highly accurate. We calculate the ionospheric change information (including TECR and TEC acceleration) using the previous epochs (30 epochs in this study) and use the previous data to predict the TECR for the epoch needing cycle slip detection. If the discrepancy is larger than our defined threshold 0.15 TECU/s, cycle slips are regarded to exist at that epoch. The key rational of method is that during a short period (1.0 s in this study) the TECR of physical ionospheric phenomenon will not exceed the threshold. This new algorithm is tested with eight different datasets (including one spaceborne GPS dataset), and the results show that the method can detect and correctly repair almost any cycle slips even under very high level of ionospheric activities (with an average Kp index 7.6 on 31 March 2001). The only exception of a few detected but incorrectly repaired cycle slip is due to a sudden increased pseudorange error on a single satellite (PRN7) under very active ionosphere on 31 March 2001. This method requires dual-frequency carrier phase and pseudorange data from only one single GPS receiver. The other requirement is that the GPS data rate ideally is 1 Hz or higher in order to detect small cycle slips. It is suitable for many applications where one single receiver is used, e.g. real-time kinematic rover station and precise point positioning. An important feature of this method is that it performs cycle slip detection and repair on a satellite-by-satellite basis; thus, the cycle slip detection and repair for each satellite are completely independent and not affected by the data of other satellites.  相似文献   

6.
The difficulty to detect and repair cycle slip of carrier phase measurements is a key limit for continuously high accuracy of GNSS positioning and navigation services. We propose an automated cycle slip detection and repair method for data preprocessing of a CORS network. The method jointly uses double-differenced (DD) geometry-free (GF) combination and ionospheric-free observation corrected for the computed geometrical distance (IF-OMC) to estimate the cycle slips in dual-frequency observations. The DD GF combination, which is only affected by the ionospheric residual, can be used to detect cycle slips with high reliability except for special pairs such as (77, 60) on GPS L1/L2 frequencies. The detection principle of the IF-OMC observable is such that there is a large discontinuity related to the previous epoch when cycle slips occur at the present epoch. The disadvantages of these two combinations can be overcome employing the proposed detection method. The cycle slip pair (77, 60) has no effect on the GF combination, while a change of 14.65 m is derived from GPS L1/L2 observations using the IF-OMC algorithm. Using pre-determined station coordinates as precise values, we found that the accuracy of the DD IF-OMC combination was 18 mm for a 200-km CORS baseline. Therefore, cycle slips in dual-frequency observations can be correctly and uniquely determined using DD GF and IF-OMC equations. The proposed method was verified by adding simulated cycle slips in observations collected from the CORS network under a quiet ionosphere and shown to be effective. Moreover, the method was assessed with observations made during intense ionospheric activity, which generated extensive cycle slips. The results show that the algorithm can detect and repair all cycle slips apart from two exceptions relating to long data gaps.  相似文献   

7.
非差非组合精密单点定位需要估计电离层延迟参数,采用电离层先验改正模型约束可以辅助电离层参数解算。针对先验电离层改正量与实际观测量之间权比关系难以确定的问题,本文提出一种电离层约束权因子搜索算法,采用权因子对先验电离层改正量的方差进行调整,根据验后残差加权平方和最小原则通过搜索找出较优的权因子,利用验后残差动态调整先验电离层改正量的方差从而达到改善定位结果的目的。采用8个MGEX跟踪站的GPS/BDS观测数据对该算法进行验证。静态结果表明:对比传统约束方法,采用搜索算法后平均三维定位精度由3.96 cm提高到3.40 cm,平均收敛时间由76.3 min缩短为59.9 min。  相似文献   

8.
基于神经网络的GPS周跳探测的新方法   总被引:1,自引:0,他引:1  
吴栋  胡伍生 《测绘工程》2008,17(6):67-70
为了用GPS获得高精度的定位结果,周跳必须在数据处理过程中被检测和修复。通过对周跳产生原因和特点的分析,提出神经网络方法,并与传统方法进行比较。用神经网络建立模型对周跳进行预测。通过对比预测值的不同来确定周跳的大小,从而实现周跳的修复。此外,还利用实测的相位数据,验证方法的可行性与有效性。  相似文献   

9.
韩厚增  王坚  李增科 《测绘学报》2015,44(8):848-857
建立了GPS/INS紧组合定位模型,改正惯性器件误差及电离层折射误差,对不同组合观测量的误差影响进行了分析,构造不同观测值组合,提出了基于惯性信息辅助的GPS周跳自适应探测方法,分析了INS定位误差对周跳探测的影响,给出了周跳探测误报率及修复成功率评价指标,提出了一种周跳检测阈值自适应确定方法。利用实测组合导航试验数据验证本文的算法,文中模拟了不同的单历元多周跳及信号失锁条件,结果表明,在GPS信号完全失锁20 s内,该方法能准确检测和修复所有周跳,中断时间的延长降低了周跳修复的成功率;GPS信号部分失锁时,在模拟的90 s中断时段内仍能修复所有周跳;模拟了170历元的5 s间隔密集周跳,周跳探测成功率为100%,正确修复率为99.41%。  相似文献   

10.
针对三频伪距相位法和无几何相位法通常受电离层影响较大的问题,对其进行改进。选取弱电离层影响、低噪声的组合观测值,分析两种方法共同的不敏感周跳组合;采用LAMBDA方法搜索周跳固定解;采用北斗实测数据进行验证分析。结果表明:除两个不敏感周跳组合外,改进后的算法能探测并修复出1周以上的所有周跳。  相似文献   

11.
We develop a new approach for cycle slip detection and repair under high ionospheric activity using undifferenced dual-frequency GPS carrier phase observations. A forward and backward moving window averaging (FBMWA) algorithm and a second-order, time-difference phase ionospheric residual (STPIR) algorithm are integrated to jointly detect and repair cycle slips. The FBMWA algorithm is proposed to detect cycle slips from the widelane ambiguity of Melbourne–Wübbena linear combination observable. The FBMWA algorithm has the advantage of reducing the noise level of widelane ambiguities, even if the GPS data are observed under rapid ionospheric variations. Thus, the detection of slips of one cycle becomes possible. The STPIR algorithm can better remove the trend component of ionospheric variations compared to the normally used first-order, time-difference phase ionospheric residual method. The combination of STPIR and FBMWA algorithms can uniquely determine the cycle slips at both GPS L 1 and L 2 frequencies. The proposed approach has been tested using data collected under different levels of ionospheric activities with simulated cycle slips. The results indicate that this approach is effective even under active ionospheric conditions.  相似文献   

12.
提出了一种顾及电离层约束的非差周跳实时探测与修复方法。通过构造3个线性无关的组合观测量,按逐级模糊度确定的思路,分别对超宽巷、宽巷和窄巷进行探测与修复;然后联合三步的探测结果,将周跳恢复到原始载波值上。在宽巷组合上进行了改进,将宽巷波长放大了5.34倍(GPS为3.4倍),由于窄巷波长较短需考虑电离层的影响,对不敏感周跳组合引入电离层残差法辅助窄巷的探测与修复。实验结果表明,该方法能够有效地进行周跳的实时探测和修复。  相似文献   

13.
Benefits of the third frequency signal on cycle slip correction   总被引:3,自引:1,他引:2  
Cycle slip detection and correction are important issues when carrier phase observations are used in high-precision GNSS data processing and have, therefore, been intensively investigated. Along with the GNSS modernization, the cycle slip correction (CSC) problem has been raised to deal with more signals from multi-frequencies. We extend the geometry-based approach by integrating time-differenced pseudorange and carrier phase observations to estimate the integer number of triple-frequency cycle slips together with the receiver clock offset, ionospheric delay variations and receiver displacements. The Least-squares AMBiguity Decorrelation Adjustment method can be employed. The benefit of the third frequency observation on the cycle slip estimate is first investigated with simulation tests. The results show that adding the third frequency observation can significantly improve the model strength and that a reliable triple-frequency CSC with a theoretical success rate of higher than 99.9 % can still be achieved, even under the condition that the range or ionosphere delay variation is poorly defined. The performance of triple-frequency CSC is validated with real triple-frequency BDS data since all BDS satellites in orbit are transmitting triple-frequency signals. The results show that the fixing rate of CSC can reach 99.1 % in static precise point positioning (PPP) and 98.8 % in the kinematic case. PPP solutions with cycle slip-uncorrected and cycle slip-corrected data sets are compared to validate the correctness of triple-frequency CSC. The standard deviations of the PPP solution in east, north and vertical component, respectively, can be improved by 31.1, 30.7 and 37.6 % for static, and by 42.0, 53.8 and 39.7 % for kinematic after cycle slips are corrected. The performance of dual- and triple-frequency CSC is also compared. Results show that the performance of dual-frequency CSC is slightly worse than that of triple-frequency CSC. These results demonstrate that the performance of CSC can be significantly improved with triple-frequency observations.  相似文献   

14.
Ionospheric disturbances can be detrimental to accuracy and reliability of GNSS positioning. We focus on how ionospheric scintillation induces significant degradation to Precise Point Positioning (PPP) and how to improve the performance of PPP during ionospheric scintillation periods. We briefly describe these problems and give the physical explanation of highly correlated phenomenon of degraded PPP estimates and occurrence of ionospheric scintillation. Three possible reasons can contribute to significant accuracy degradation in the presence of ionospheric scintillation: (a) unexpected loss of lock of tracked satellites which greatly reduces the available observations and considerably weakens the geometry, (b) abnormal blunders which are not properly mitigated by positioning programs, and (c) failure of cycle slip detection algorithms due to the high rate of total electronic content. The latter two reasons are confirmed as the major causes of sudden accuracy degradation by means of a comparative analysis. To reduce their adverse effect on positioning, an improved approach based on a robust iterative Kalman filter is adopted to enhance the PPP performance. Before the data enter the filter, the differential code biases are used for GNSS data quality checking. Any satellite whose C1–P1 and P1–P2 biases exceed 10 and 30 m, respectively, will be rejected. Both the Melbourne–Wubbena and geometry-free combination are used for cycle slip detection. But the thresholds are set more flexibly when ionospheric conditions become unusual. With these steps, most of the outliers and cycle slips can be effectively detected, and a first PPP estimation can be carried out. Furthermore, an iterative PPP estimator is utilized to mitigate the remaining gross errors and cycle slips which will be reflected in the posterior residuals. Further validation tests based on extensive experiments confirm our physical explanation and the new approach. The results show that the improved approach effectively avoids a large number of ambiguity resets which would otherwise be necessary. It reduces the number of re-parameterized phase ambiguities by approximately half, without scarifying the accuracy and reliability of the PPP solution.  相似文献   

15.
在高精度GNSS测量中,周跳的存在直接影响到整周模糊度的解算及最终定位精度。针对目前各省市连续运行基准站网多系统观测数据的获取导致周跳探测工作量增加,该文基于甘肃省卫星定位连续运行基准站网(GSCORS)双频观测值提出了一种满足普遍条件的多系统周跳探测方法。采用相位减伪距结合电离层残差法分别对GPS和BDS原始观测值进行周跳探测与修复,通过对相应载波的模拟周跳探测发现,BDS较大的卫星钟差和伪距噪声影响了数据质量,其周跳检测量时间序列波动大于GPS,对7周以上周跳探测的精度较GPS会有1周的偏差,但电离层残差法能对BDS相位减伪距法探测残留的1周小周跳进行二次探测并修复。实验最终证实该方法能够有效探测并且正确分离GPS和BDS每个频率1周以上的周跳。  相似文献   

16.
针对电离层延迟误差目前是GNSS导航定位精度最重要误差源的现状,通过GNSS参考站或跟踪站实测数据计算电子总含量值,建立区域电离层模型,监测区域电离层变化,进而找到削弱或消除电离层延迟误差影响方法。利用曲面拟合实现建模,在模型的建立过程中通过对不同的模型阶数进行设置,对比不同情况下的模型精度,从而确定特定区域内最佳数据采样间隔及阶数设置,并在最佳阶数设置情况下,比较了预报不同时段的精度,进而对延迟量预报问题进行探讨,得出一些有益结论。可以通过该模型单独解算流动站站点的实时电离层延迟信息,这对多基站CORS的站间距离选择和单基站CORS基准站和流动站之间距离设计,尤其对提高单频接收机以及GIS产品用户的定位精度和差分模型的覆盖范围都具有实际参考意义。  相似文献   

17.
利用TEQC软件的GNSS数据质量检核功能,研究矿区GPS变形监测目标点的选址问题;利用TEQC软件提取出目标点的电离层延迟、多路径影响、周跳、卫星信号信噪比等信息,并根据其信息进行调整或剔除不合适的监测目标点。通过实例,表明了研究方法的有效可行,对矿区变形监测目标点的选址提供了科学依据,保证了目标点GPS观测数据的可靠性。  相似文献   

18.
双频组合法探测与修复周跳的补充   总被引:2,自引:0,他引:2  
基于双频单站的探测与修复周跳的方法,把伪距历元差与相位历元差组合作为约束条件,利用双频载波相位观测值组合的方法联合进行周跳探测与修复,并主要针对周跳在频率比附近变化时此方法无法探测的缺点,根据具体实例的分析、总结,采用预先插入周跳法进行补充探测,并对产生的周跳进行了有效修复。  相似文献   

19.
针对实时GNSS单频定位中电离层延迟改正问题,本文采用可用于实时GNSS单频定位的几种电离层模型对电离层延迟进行改正并分析其对GNSS单频单点定位性能的影响。其中,对单频SPP的电离层延迟采用模型直接进行改正,采用Klobuchar模型、CODE的预报产品c1pg、原国家测绘地理信息局的实时球谐电离层产品cosong和CODE事后产品codg计算的电离层精度依次提高;采用不同电离层模型作为电离层估计的先验约束进行单频PPP定位。结果表明:采用精度较好的电离层产品作为先验约束可加快单频PPP收敛。  相似文献   

20.
Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号