首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Planetary and Space Science》1967,15(8):1287-1301
A Study of auroral substorms using coordinated measurements of a number of parameters at Ft. Churchill, Manitoba (L = 8) in October 1963 has yielded interesting conclusions on the electron precipitation close to the northern auroral boundary, the morphology of which appears to follow closely the working model proposed by Akasofu. Extensions to this model are suggested that include high energy electron precipitation (>30 keV) as determined from X-ray measurements at balloon altitudes. During surges and auroral substorms near local midnight, very localized precipitation of electrons with a wide spectrum of energies produced a sharp northern optical and radio absorption border which moved rapidly northwards and contained the auroral electrojet. During the decay phases of the substorms, a region of high energy precipitation receded southwards in advance of the northern border of luminous aurora and appeared to be accompanied by the ionospheric electric current. In contrast to this, the optical northern border produced no noticeable auroral absorption or magnetic activity on its southward overhead passage later in the substorm. Systematic spectral changes near the border indicated a softening of the electron spectrum above 40 keV with increasing northward position (or increasing L value), in agreement with satellite observations. Highly structured enhancements of precipitation of high energy electrons occurred at times when small scale folds in auroral bands were reported during break-up and at times of occurrence of Type B aurora.  相似文献   

2.
The relationship between sudden geomagnetic field changes in the nightside cusp region and impulsive electron precipitation events in the auroral zone is investigated. The investigations are based on magnetic field measurements from the spacecraft Explorer 35, Explorer 33 and OGO-5 and on X-ray measurements with balloon-borne instruments from Kiruna/Sweden. The sudden field changes are characterized by a decrease of the field strength and a rotation of the field direction. The precipitation events represent strong flux increases within a few minutes. The field changes were accompanied by impulsive precipitation not only in the midnight sector but also on the dayside. They can be regarded as a manifestation of the unsteady magnetospheric processes during the expansion phase. Whereas both phenomena occurred simultaneously on the nightside, the increase of precipitation was delayed by ca. 5 min on the dayside. It is assumed that the simultaneous occurrence on the nightside can be related to the formation of a neutral line with a considerable length in dawn-dusk-direction. Mechanisms are also discussed which could be responsible for the time delay on the dayside.  相似文献   

3.
The effects of a typical auroral electron precipitation substorm sequence on odd nitrogen species in the thermosphere have been investigated. The analysis makes use of the time dependent model of the aurora developed by Roble and Rees (1977), which couples the thermal properties to the ionospheric chemistry and transport self-consistently and includes diffusive transport of NO, N(2D) and N(4S). A substantial increase in the E-region density of NO or of N(4S) is predicted, with the result depending on the production ratio of N(2D) to N(4S) in the aurorally dominant source mechanism, electron impact dissociation of N2. A production ratio that favors N(2D) by a factor of one half or larger leads to enhancement of NO, while a ratio of 14N(2D)+34N(4S) results in a buildup of N(4S). The cyclical behaviour of the substorm, i.e. alternate intervals of electron precipitation and quiet periods, accentuates the scavenging effect of the initially dominant odd nitrogen species upon the less abundant one.  相似文献   

4.
On 27 January 1979, three rocket payloads were launched from Kiruna, Sweden into different phases of two successive auroral substorrns. Among other experiments, the payloads carried the RIT double probe electric field experiments providing electric field, electron density and temperature data which are presented here. These data supported by rocket particle observations are discussed mainly in association with ground-based observations (magnetometer, TV) and very briefly with GEOS electric field data. The motions of the auroral forms as obtained from auroral pictures are compared with E × B/B2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground-based magnetometer data (Scandinavian Magnetometer Array).  相似文献   

5.
The auroral infrasonic wave (AIW) substorm morphologies are compared for two trans-auroral zone stations, Inuvik, N.W.T. Canada (70°·4 dip lat) and College, Alaska (64°·6 dip lat), that lie along the same magnetic meridian with a north-south separation of 738 km. Statistical studies of the number of AIW received at College over a 5 yr period and at Inuvik over a 2 yr period as well as studies of individual auroral substorms observed at both stations have shown that in the morning sector many more AIW are observed at College than at Inuvik. This difference is related to the changing location of the westward auroral electroject with local time (Weins and Rostoker, 1973). The distribution of frequency of occurrence of AIW horizontal trace velocity Vη is presented for College data together with a discussion of the effects on the distribution of (1) source speed, (2) wind shear, (3) geometry of the AIW mach cone with respect to the observing station, (4) the filtering of AIW with high ray path apogees and (5) the decrease in AIW amplitude with increasing mach number.  相似文献   

6.
Auroral, magnetic variation and pulsation data from the dense network in the nearmidnight portion of the auroral zone are used together with the measurements of suprathermal particles and electromagnetic fields by the IMP-8 and ISEE-1 spacecraft within the plasma sheet to study the characteristics of activity during two magnetically quiet periods on 3 March 1976 and 23 March 1979. Contrary to existing beliefs, we found clear signatures of numerous (5–10 events per hour) transient events, characterized by plasma flows, energetic particle bursts and EB field variations. A close association of these events in the plasma sheet with the local auroral flares (LAFs) in the conjugate sector of the auroral zone is established for many events. We conclude that LAF (local auroral arc activation with associated Pi pulsations but extremely weak magnetic bays) have the same plasma sheet manifestations (apparently, the same physics) as the individual substorm intensifications during strong substorm expansion events, which differ from the studied quiet periods mainly by the strength and number of these intensifications. These transient phenomena seem to play an important role in the energetics of the quiet time magnetotail.  相似文献   

7.
With the aid of the classical impulse approximation a simple formula is derived for the cross section for electron loss from fast excited hydrogen atoms passing through a neutral gas. Detailed computations relevant to the quenching of hydrogen line emission in auroras are performed. It is found, incidentally, that the population distribution amongst the states of a level is unlikely to be brought into statistical equilibrium by the collisions suffered by the hydrogen atoms.  相似文献   

8.
E-region electron density profiles with high resolution in time and altitude (5 s and 2 km, respectively) measured by the EISCAT incoherent scatter radar are used to examine the conductivity changes during substorm growth, onset and expansion phases for seven substorms occurring in the local evening sector. The measurements are related to electric fields and neutral winds measured by the radar, to ground magnetometer and riometer records, and to optical features, including the westward-travelling surge and auroral bulge. Auroral features are identified using all-sky camera photographs and images from the Viking satellite. Conductances and electric fields in the zone of diffuse aurora corresponding to the westward substorm electrojet are found to be consistent with existing models. Conductances in the discrete auroral arcs marking the expanding edge of the substorm are found to be much higher, and electric fields rather lower, than previously assumed. The magnetic signatures of the discrete arcs are found to be best explained by Hall and Pedersen currents driven by a southward neutral wind, as is observed by the radar. The highest conductances observed, with Hall and Pedersen conductances reaching 120 and 48 S, respectively, are found to be associated with arcs appearing at the southern edge of activity in the vicinity of a westward-travelling surge.  相似文献   

9.
The temperature and density of the plasma in the Earth's distant plasma sheet at the downstream distances of about 20–25 Re are examined during a high geomagnetic disturbance period. It is shown that the plasma sheet cools when magnetospheric substorm expansion is indicated by the AE index. During cooling, the plasma sheet temperature, T, and the number density, N, are related by T ∝ N23 (adiabatic process) in some instances, while by TN?1 (isobaric process) in other cases. The total plasma and magnetic pressure decreases when T ∝ N23 and increases when TN?1. Observation also indicates that the dawn-dusk component of plasma flow is frequently large and comparable to the sunward-tailward flow component near the central plasma sheet during substorms.  相似文献   

10.
Bursts of energetic electrons in the magnetospheric tail have been compared with the simultaneous radiowave absorption data in the auroral-zone. It was found that the tail bursts could be identified with the auroral-zone activity in a number of instances. It is therefore inferred that the lines of force pertaining to the auroral-zone often reach out more than 15 Earth radii in the night side. It is also suggested that the activity in the tail may be the fundamental cause of auroral phenomena, the day side auroral absorption zone being merely a consequence of the precipitation due to electrons travelling eastward from the tail.  相似文献   

11.
It is shown that the magnetic field of an enhanced dynamo current in the dayside boundary layer and of the connected circuit can quantitatively account for the equatorward shift of the cusp region which is observed during the expansive phase of magnetospheric substorms.  相似文献   

12.
13.
Utilizing a unique set of photometric and riometer observations obtained just after twilight (1300–1600 M.L.T.) at College, Alaska, the occurrence of pulsating auroras in the afternoon sector of the auroral zone is documented for the first time. A consistent tendency for the auroral pulsations to terminate as the Earth's shadow passes through the E- and F-layers is interpreted in terms of the precipitation pulsation mechanism proposed by Coroniti and Kennel (1970) and the cold plasma injection theory of Brice and Lucas (1971).  相似文献   

14.
Explorer 34 observations of the low-latitude tail field beyond 25 RE are critically examined to see if the signature of the neutral-line formation is always visible during substorm expansion phases. Cases are found where a clear signature cannot be recognized. However, comparison of the simultaneous tail observations by multiple satellites suggests that the absence of a clear signature can largely be due to the spatial effect, namely due to the presence of the satellite outside the region where the local magnetic field condition is influenced by the neutral-line formation. On the other hand, evidences supporting the close association between the neutral-line and the expansion phase are found for substorm events having double expansion-phase onsets.  相似文献   

15.
《Planetary and Space Science》2007,55(11):1502-1508
We investigate the dynamics of magnetospheric ions during transient reconfigurations of Mercury's magnetotail. At Earth, numerous observations during similar events reveal a prominent energization (up to the hundreds of keV range) of heavy ions (O+) originating from the topside ionosphere. This energization likely results from a resonant nonadiabatic interaction with the electric field that is induced by dipolarization of the magnetic field lines, the time scale of this reconfiguration being comparable to the heavy ion cyclotron period. The question then arises whether such an energization may occur at Mercury. Using single-particle simulations in time-varying electric and magnetic fields, we show that prominent nonadiabatic heating is obtained for ions with small mass-to-charge ratios (e.g., H+,He+). As for heavy ions (e.g., Na+,Ca+) that have cyclotron periods well above the time scale of the magnetotail reconfiguration (several seconds), a weaker energization is obtained. The resonant heating mechanism that we examine here may be of importance for solar wind protons that gain access to the inner hermean magnetotail as well as for light ions of planetary origin that directly feed the near-Mercury plasma sheet.  相似文献   

16.
17.
The behavior of midday auroras during auroral substorms is examined on the basis of all-sky photographs taken from the South Pole station. It is indicated that the model of auroral substorms constructed by Starkov and Feldstein (1967) needs some modifications.  相似文献   

18.
Evidence is presented from spectral analysis of Pi2 pulsations detected during a substorm by the University of Alberta meridian chain of magnetometers to support the conclusion that at auroral latitudes there is no apparent correlation between the principal spectral components of Pi2 pulsations and the latitude of the observations. From these data we infer that the Pi2 magnetic variations observed at the Earth's surface are not generated by simple MHD eigenoscillations of magnetospheric field. As well, the data show clear contributions to the Pi2 pulsation spectrum by ionospheric currents. These observations lead to the suggestion that Pi2 pulsation spectra are produced by the sudden changes in magnetospheric and ionospheric current systems which take place at the beginning of a substorm.  相似文献   

19.
The direction of motion of the auroral forms in several sectors of the auroral oval during substorms is studied. The creation phase is characterized by the equatorward displacement of the luminous region in evening (15–21 LT) and in day (09–15 LT) hours, while individual forms in the luminous region drift mainly poleward with a mean velocity of 230 m/sec in day hours and equatorward with the mean velocity of 230 m/sec in evening hours. The equatorial shift of the luminous region correlates well with the BZ-component of the interplanetary magnetic field. The onset of the displacement coincides with the southward BZ-rotation and is accompanied by auroral intensity increase for about 10–20 min.During the expansive and recovery phases the day auroras drift poleward with mean velocities of 330 and 300 m/sec, respectively. In the evening sector the individual auroral forms drift both poleward and equatorward during the expansive phase and drift mainly towards the pole during the recovery phase with a mean velocity of 200 m/sec. In the morning sector characteristics of the motion of the individual auroral forms are more complicated than in the other sectors. The well defined shifts of the luminous region are not discovered. The possible relation between the motions of individual auroral forms with the magnetosphere convection is discussed.  相似文献   

20.
Observations are reported of field aligned etectron fluxes in the energy range 50–500 eV at altitudes below 270 km from two rocket flights in the auroral zone. The regions of field aligned suprathermal electrons occurred in bursts of a few seconds duration, and in some instances the energy of the peak field aligned flux was in the range 100–500 eV. Theoretical calculations of the pitch angle distribution were made using the Monte Carlo technique for two model atmospheres having exospheric temperatures of 750 and 1500 K bracketing the expected auroral zone exospheric temperature. The calculations were made for the case of incident field aligned suprathermal fluxes with no local parallel electric field and also for the case of a local constant parallel electric field. Comparison of theoretical and experimental pitch angle distributions showed that in one case at 270 km a parallel electric field of 1–2 mV/m fitted the data whereas another burst at 210 km required a parallel electric field of about 10 mV/m to produce a field aligned distribution of 230 eV electrons as pronounced as was observed. Furthermore in this latter case the lack of strong field alignment at 500 eV pointed to localisation of the parallel electric field to an altitude range of 20–30 km about the rocket altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号