首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

2.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   

4.
This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae ~16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared ~15.9 cal. ka BP, and became dominant after ~15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after ~13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum ~11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant ~11.8–11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between ~10.6 and 7 cal. ka BP. Vegetation became similar to the modern after ~7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.  相似文献   

5.
Tephra stratigraphical and tephrochronological studies of marine core MD99‐2275 on the North Icelandic shelf have revealed 58 new tephra horizons within the last 7050 cal. a BP, bringing the total number of identified tephra layers to 76. So far, over 100 tephra layers have been identified in the entire core spanning the last 15 000 years. The majority of the newly identified tephra layers are basaltic in composition and originate from the most active volcanic systems in Iceland, namely Grímsvötn, Veidivötn‐Bárdarbunga and Katla. A total of 40 tephra layer land–sea correlations have been made within this time period, of which 16 represent absolutely dated tephra markers. In addition, two tephra marker series are revealed in the marine sediments and in the terrestrial tephra stratigraphy, located between c. 2300–2600 and between 5700–5900 years. For the last 15 000 years, 21 tephra markers have been recognized. The marine tephra layer frequency (TLF) reveals two peaks, within the last 2000 years, and between 5000 and 7000 years ago. It shows the same general characteristics as the terrestrial TLF curve in Iceland, which indicates that marine sediments can yield important information about volcanism in Iceland. This is useful in time segments in which terrestrial records are poor or non‐existent. The study contributes to a high‐resolution tephrochronological framework on the North Icelandic shelf, with core MD99‐2275 representing a potential stratotype section in the area, and for the northern North Atlantic–Nordic Seas region, as well as being an important contribution to the Lateglacial–early Holocene volcanic history of Iceland.  相似文献   

6.
This paper presents the results of an investigation of early Holocene cryptotephra layers recovered from sediments in two kettle-hole basins at Inverlair (Glen Spean) and Loch Etteridge (Glen Fernisdale). Electron probe micro-analysis (EPMA) of shards from two cryptotephra layers revealed that the uppermost layer in both sequences has a composition similar to the An Druim tephra, first reported from a site in Northern Scotland. We present evidence that distinguishes the An Druim from the chemically very similar early Holocene Ashik tephra. The lowermost layer at Inverlair matches the composition of the Askja-S tephra found in the Faroe Islands, Ireland, Sweden, Germany and Switzerland. This is the first published record of the Askja-S tephra from mainland Scotland. As at other sites, the Askja-S seems to mark a short-lived climatic deterioration, most likely the Pre-Boreal Oscillation: at Inverlair it occurs just above an oscillation represented by a reduction in LOI values and in the abundance of Betula pollen, and by a peak in Juniperus pollen. The lowermost layer at Loch Etteridge has a Katla-type chemistry and extends through the upper part of the Loch Lomond (Younger Dryas/GS-1) Stadial to the Stadial/Holocene transition; it may represent a composite layer which merges the Vedde and Abernethy tephras. One of the key conclusions is that the glacial-melt deposits in the vicinity of Inverlair (kames and kame terraces) were ice-free by c. 10.83 ka (the age of the Askja-S), providing a limiting age on the disappearance of LLR ice in Glen Spean.  相似文献   

7.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

8.
Analyses of a sediment core from Highstead Swamp in southwestern Connecticut, USA, reveal Lateglacial and early Holocene ecological and hydrological changes. Lateglacial pollen assemblages are dominated by Picea and Pinus subg. Pinus, and the onset of the Younger Dryas (YD) cold interval is evidenced by higher abundance of Abies and Alnus viridis subsp. crispa. As climate warmed at the end of the YD, Picea and Abies declined and Pinus strobus became the dominant upland tree species. A shift from lacustrine sediment to organic peat at the YD–Holocene boundary suggests that the lake that existed in the basin during the Lateglacial interval developed into a swamp in response to reduced effective moisture. A change in wetland vegetation from Myrica gale to Alnus incana subsp. rugosa and Sphagnum is consistent with this interpretation of environmental changes at the beginning of the Holocene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates a detailed well‐dated Lateglacial floristic colonisation in the eastern Baltic area, ca. 14 000–9000 cal. a BP, using palynological, macrofossil, loss‐on‐ignition, and 14C data. During 14 000–13 400 cal. a BP, primarily treeless pioneer tundra vegetation existed. Tree birch (Betula sect. Albae) macro‐remains and a high tree pollen accumulation rate indicate the presence of forest‐tundra with birch and possibly pine (Pinus sylvestris L.) trees during 13 400–12 850 cal. a BP. Palaeobotanical data indicate that the colonisation and development of forested areas were very rapid, arising within a period of less than 50 years. Thus far, there are no indications of conifer macrofossils in Estonia to support the presence of coniferous forests in the Lateglacial period. Signs of Greenland Interstadial 1b cooling during 13 100 cal. a BP are distinguishable. Biostratigraphic evidence indicates that the vegetation was again mostly treeless tundra during the final colder episode of the Lateglacial period associated with Greenland Stadial 1, approximately 12 850–11 650 cal. a BP. This was followed by onset of the Holocene vegetation, with the expansion of boreal forests, in response to rapid climatic warming. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The Middle Pleistocene palaeoclimate and palaeoenvironment evolution of the Las Tablas de Daimiel wetlands is described using a combination of sedimentology, pollen and δ13C and δ18O isotopic records of Unit B of core LT‐199906. This unit mostly contains fluvial and palustrine sediments. U/Th and amino acid racemization (AAR) dating and a comparison of the δ18O curve of Unit B with oceanic records suggests that Unit B spans the period from the end of Marine Isotope Stage (MIS) 10 (340 ka) to the first stages of MIS 7 (ca. 210 ka). MIS 9 was characterised by a regional vegetation dominated by Cupressaceae, with Pinus as a tree element. The water level was high and temperatures were very probably higher than during the Holocene. MIS 8 and the first substages of MIS 7 (7e, 7d and 7c) were dominated by xerophilous steppe vegetation in lowlands (elevations around 610 m above sea level) near to the wetland. At higher altitudes, far away from the wetland, there were fewer Pinus than in MIS 9, and a greater presence of warm, temperate and cool climate tree elements. The aquatic system in MIS 9 became shallower, with eutrophication and the accumulation of organic matter occurring; temperatures were similar to or lower than those of the Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
At Lingfeng, (34°17'N, 104°08'E) on the northern slopes of the Qinling Mountains, a stratigraphic survey was made of a 21-m-profile of floodplain sediments on the watershed between the Chang Jiang (Yangtze River) and Huang He (Yellow River) at 2500 m above sea level. The sediments contain <2 m thick layers of peat and detritical plant matter that had been deposited on the floodplain of the Langouhe. If the radiometric dates are reliable, the chronology of the site spans some 80,000 years, covering an accumulation process from the terminal Last Interglacial up to <24 ka BP. The phase >73 ka BP had cool and wet conditions with a coniferous forest vegetation. Between 73 ka and > 40 ka colder and drier conditions were likely. The vegetation changed from aPicea-Pinus forest to aPicea-Abies-Larix forest with a later increase of non-arboreal pollen. Around 40 ka the climate was warm and moist. The accumulation of silt and organic matter as well as the development of a mixed coniferous forest with high rates of thermophilous trees(Quercus, Castanea) characterize the interstadial conditions at this time. Later on, the climate changed to cool and moist conditions, evidenced by silt and peat accumulation and a coniferous forest vegetation up to <24 ka BP. The loess in this area was deposited after 24 ka and erosion by the tributaries of Chang Jiang and Huang He to a depth of at least 40 m created the watershed between the two river systems.  相似文献   

13.
The historical biogeography of highland Mediterranean pines is explored based on Late Pleistocene and Holocene charcoal from Portugal (Iberian Peninsula, SW Europe). The earliest presence of Pinus type sylvestris (including P. nigra, P. sylvestris and P. uncinata) is recorded in archaeological layers dated at ca 23,900 BP, during the Full Glacial. The abundance of remains identified as Pinus type sylvestris suggests that this was a frequent taxon, at least at middle altitudes. Significant occurrences were recorded up until ca 11,000 BP, at the end of the Lateglacial warming period. From the early Holocene onwards the presence of Pinus type sylvestris is recorded only sporadically, but at least up to 2000 years ago. The competition with other tree and shrub species favoured by the Holocene warming may have triggered the decline of highland pines in Portugal. Eventual anthropogenic impact is also considered as playing a role in its regional decline, such as increasing fire frequency resulting from amplified land use since the Neolithic.  相似文献   

14.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Clarification of the temporal relationships amongst records of environmental change is dependent on accurate timescales. Event markers such as tephra layers are extremely important for constraining chronologies and providing tie points. In this report we present evidence of a previously unknown early Holocene Icelandic cryptotephra from a lake in northern Scotland—the ‘An Druim Tephra’. The calibrated radiocarbon age of 9560 cal. yr BP for this new cryptotephra makes it an important addition to the suite of cryptotephras now recorded from the last glacial termination and early Holocene in northwest Europe. In addition we report evidence in support of a ‘Younger Borrobol Tephra’ from Lateglacial sediments of Allerød age. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Macrofossil, pollen, lithostratigraphy, mineral magnetic measurements (SIRM and magnetic susceptibility), loss‐on‐ignition, and AMS radiocarbon dating on sediments from two former crater lakes, situated at moderate altitudes in the Gutaiului Mountains of northwest Romania, allow reconstruction of Late Quaternary climate and environment. Shrubs and herbs with steppe and montane affinities along with stands of Betula and Pinus, colonised the surroundings of the sites prior to 14 700 cal. yr BP and the inferred climatic conditions were cold and dry. The gradual transition to open PinusBetula forests, slightly higher lake water temperatures, and higher lake productivity, indicate more stable environmental conditions between 14 700 and 14 100 cal. yr BP. This development was interrupted by cooler and drier climatic conditions between 14 100 and 13 800 cal. yr BP, as inferred from a reduction of open forests to patches, or stands, of Pinus, Betula, Larix, Salix and Populus. The expansion of a denser boreal forest, dominated by Picea, but including Pinus, Larix, Betula, Salix, and Ulmus started at 13 800 cal. yr BP, although the forest density seems to have been reduced between 13 400 and 13 200 cal. yr BP. Air temperature and moisture availability gradually increased, but a change towards drier conditions is seen at 13 400 cal. yr BP. A distinct decrease in temperature and humidity between 12 900 and 11 500 cal. yr BP led to a return of open vegetation, with patches of Betula, Larix, Salix, Pinus and Alnus and individuals of Picea. Macrofossils and pollen of aquatic plants indicate rising lake water temperatures and increased aquatic productivity already by ca. 11 800 cal. yr BP, 300 years earlier than documented by the terrestrial plant communities. At the onset of the Holocene, 11 500 cal. yr BP, forests dominated by Betula, Pinus and Larix expanded and were followed by dense Ulmus forests with Picea, Betula and Pinus at 11 250 cal. yr BP. Larix pollen was not found, but macrofossil evidence indicates that Larix was an important forest constituent at the onset of the Holocene. Moister conditions were followed by a dry period starting about 10 600 cal. yr BP, which was more pronounced between 8600 and 8200 cal. yr BP, as inferred from aquatic macrofossils. The maximum expansion of Tilia, Quercus, Fraxinus and Acer between 10 700 and 8600 cal. yr BP may reflect a more continental climate. A drier and/or cooler climate could have been responsible for the late expansion (10 300 cal. yr BP) and late maximum (9300 cal. yr BP) of Corylus. Increased water stress, and possibly cooler conditions around 8600 cal. yr BP, may have caused a reduction of Ulmus, Tilia, Quercus and Fraxinus. After 8200 cal. yr BP moisture increased and the forests included Picea, Tilia, Quercus and Fraxinus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
A pollen‐based study from Tiny Lake in the Seymour‐Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740 ± 70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860 ± 50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour‐Belize Inlet Complex, on a meso‐ to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour‐Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi‐permanent air mass. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Paleoclimatic changes in the late Quaternary sediments deposited in the East Sea were analyzed by studying diatoms. A total of 95 species belonging to 47 genera were identified from the Core02GHP-02 of the Ulleung Basin in the East Sea, Korea. In the Core 02GHP-02, U-Oki(169–181 cm; 9.3 ka), AT(464–465.5 cm; 22 ka) and U–Ym(556–559 cm; 33 ka) tephra layers were recognized. The chronological divisions of 02GHP-02 may be correlated with the climatic changes from the glacial interval(730–620 cm; MIS3), to interstadial(620–500 cm; MIS3), to the last glacial maximum(500–390 cm; MIS 2), to the deglaciation(390–290 cm; MIS 2), to the late glacial(290–190 cm; MIS 1), and to the Holocene(190–10 cm; MIS 1). It is speculated that diatoms were rarely found during the glacial interval when the 02GHP-02 core was deposited; during the interstadial(MIS 3) and deglaciation, a mixture of warm-water and cold-water species were found. In particular, Fragilariopsis doliolus seems to have appeared in the East Sea after 8 ka BP. In the lower layers of the Holocene deposits, cold-water species such as Neodenticula seminae were frequently found, while in the upper layers, warm-water species such as Hemidiscus cuneiformis were found in relatively large abundance. Therefore, the findings indicate that the climate became warmer during the transition from the lower layer to the upper layer of the Holocene deposits.  相似文献   

20.
The Sarliève marsh sediments (Massif Central, France) contain two tephras. The first tephra [, ca. 12 000 BP], regionally well known, enables to date the beginning of lacustrine infill to the Lateglacial. The second tephra, the ‘tephra de Sarliève’, the emitting volcano of which is unknown, would be dated to around the Early Subboreal from pollen data. This occurrence, after the discovery of the ‘tephra de Beaunit’, emphasizes that volcanic eruption(s) occurred in the ‘Chaîne des Puys’ or in the volcanic Cézallier more than 1000 years after the last known eruption (Pavin) in the ‘Chaîne des Puys’ at around 6.6/6.7 ka (5800/5900 BP). In the Sarliève piles, these tephras, well preserved in thick and more silicated deposits of deltas, were not observed in carbonated basin sediments where they were altered. The abundance of authigenic zeolites formed during the Lateglacial in restricted depocentre lacustrine waters allows us to detect initial CF1 tephra occurrence. To cite this article: A. Fourmont et al., C. R. Geoscience 338 (2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号