首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using magnetic data from the North American IMS network at high latitudes, Pi 3 pulsations are analysed for a period of 412 continuously-disturbed days. The data were obtained from 13 stations in the Alaska and Fort Churchill meridional chains and in the east-west chain along the auroral zone. In the past, Pi 3 pulsations associated with substorms have been classified into two sub-categories, Pi p and Ps 6. However, we find that Pi 3's which have longer periods than Pi p and which are different from Ps 6 are more commonly observed than these two special types. Power spectra, coherence and phase differences are compared among the stations. Results show that noticeable differences for latitudinal dependence of period and amplitude exist among midnight, morning and late-evening Pi 3 pulsations. Results for Pi 3 occurring near midnight indicate that the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the center of the westward auroral electrojet. On the other hand, for Pi 3 pulsations occurring in the morning, the periods at which the power spectral density is a maximum are longest, and the amplitude largest, near the poleward edge of the westward electrojet. Furthermore, for Pi 3 pulsations occurring in the late evening, their periods are longer and their amplitudes larger near both the Harang discontinuity and the poleward edge of the westward electrojet than near its center. Correlations between pairs of adjoining stations are better in the polar cap than at auroral latitudes. It is also found from hodograms that the sense of polarization often varies from one station to another for the same event, and that the time duration in which the same rotational sense is maintained is shorter near midnight than in the morning and late evening. It is suggested that the source regions of the morning and late-evening Pi 3's lie on the electrojet boundaries; that is at the Harang discontinuity (in the evening) and at the poleward edge of the westward electrojet (in the morning and evening). The generation of midnight Pi 3 pulsations, centered at a location within the westward auroral electrojet appears to be associated directly with the generation of that electrojet.  相似文献   

2.
Geomagnetic data for the year 1967 from seven Canadian observatories, spanning the subauroral, auroral and polar zones, have been analysed to investigate the characteristic variation of Pc5 period with several geophysical variables. Pulsations in the whole spectrum of Pc5 (period range 150–600 s) were found to occur at all of the observatories. Those with smaller periods occurred more frequently at lower latitudes while those with longer periods occurred more frequently at higher latitudes. Daily variation of the periods of Pc5 showed little change with seasons or with magnetic activity. Periods, in general, had two daily maxima which appeared at different local times in different zones. A predominant morning peak was noted at all stations except Baker Lake, where a mid-day maximum of the period was found. The Pc5 periods tended to increase with geomagnetic activity at lower latitude stations, and to decrease with activity at stations in the polar cap for low to moderateKp levels. At high activity levels these trends appeared to reverse, though results are less certain. In different seasons and for the whole year the periods increased almost linearly with latitude. However when similar analysis was done for individual hours of the day and for different magnetic activity groups, this linear relationship between period and geomagnetic latitude was not evident. Efforts to detect a 27-day recurrence tendency of Pc5 periods did not succeed.Contributions from the Earth Physics Branch No. 495.  相似文献   

3.
We discuss the effects in ionospheric absorption of particle precipitation observed in the afternoon-early evening sector during substorms with onset in the midnight sector. All events considered here occurred during magnetically disturbed periods, Kp > 3. For many of the substorm events a smooth southward moving absorption bay is seen in the midnight and evening sectors about 1 h preceeding the onset. The magnetic pulsation activity is low during this preceding bay.

After substorm onset near magnetic midnight the precipitation region may expand with a sharp onset at the front towards the West in spatially confined regions at high and low L-values separately with about equal velocities. The observations are consistent with a model of westward expansion of the energetic electron precipitation in two regions, aligned parallel to the auroral oval, at high and low L-values of about L 6 and L 4.8.

The westward expanding absorption activity correlates well with local magnetic variations. In magnetic pulsations PiB events are seen at high latitudes simultaneously with the westward moving onsets while at low latitudes IPDP pulsations are observed during the active part of the absorption events. Later in the substorm event a slowly varying absorption event (SVA) is sometimes observed at the lower L-values, L 3–4.  相似文献   


4.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

5.
For several storms the asymmetry of the magnetic disturbance values at equatorial latitudes has been investigated. Asymmetries were found for which the maximum and minimum depressions of the horizontal intensity occur at midnight and at noon, respectively, (anomalous DS-variation); other asymmetries, where the maximum and minimum depressions were observed in the morning and in the evening, respectively (inverse DS-variation). The DS-variation at equatorial latitudes was discussed in connection with the polar magnetic substorm and the Dst-variation.  相似文献   

6.
Photometers on the ISIS-II spacecraft provide a view of the atomic oxygen 5577 and 6300 Å emissions and the N2+ 3914 A? emission detected as dayside aurora in the magnetospheric cleft region. The 6300 Å emission forms a continuous and permanent band across the noon sector, at about 78° invariant latitude, with a defined region of maximum intensity that is never less than 2kR (uncorrected for albedo), and is centred near magnetic noon. There are significant differences in the intensity patterns on either side of noon and their responses to geomagnetic activity. Discrete 3914 Å auroral forms appear within this region, at preferred locations that cannot be precisely specified, but which tend to the poleward edge of the 6300 Å emission in the evening, and the equatorward edge in the morning where the difference between the two emissions is greatest. It is concluded that the discrete auroras observed by all-sky cameras in the day sector do follow the 6300 Å emission through the cleft region, though a definite cleft boundary is not defined. Substantial 6300 Å emission having a peak intensity near noon is also seen in the low latitude “outer auroral belt”, while the diffuse 3914 Å emission tends to show a relative minimum near noon. On the morning side the 3914 Å intensity is displaced to lower latitude and earlier local times, compared to the 6300 Å emission.  相似文献   

7.
Data from an East-West line of magnetometer stations stretching approximately along 67° geomagnetic latitude from western Alberta (290° geomagnetic longitude) to western Quebec (350° geomagnetic longitude) in Canada have been used to study the longitudinal characteristics of Pc5 geomagnetic pulsations. This paper concerns the analysis of 3 days' data of relatively intense pulsational activity which occurred around the middle of October in 1976. The intensity variations of Pc5 activity on longitude and time clearly show that the activity is localized in longitude in the morning sector and confused in the afternoon sector. Pulsational activity in the morning sector for two of the events studied appears to be markedly enhanced across the dawn terminator and midway through the pre-noon quadrant. A study of the longitudinal phase variation indicates that the eastern stations lead in phase before noon and lag in phase after noon. This implies that the signals propagate away from noon toward the dawn-dusk meridian. A systematic reversal in the sense of polarization in the horizontal plane was observed when the line of stations rotated across noon. The polarization characteristics in the vertical planes of the events recorded by stations in eastern Canada between 318° and 350° geomagnetic longitude appear to be stationary with respect to time suggesting that the polarization characteristics of pulsations are influenced by geoelectric structures. The implications of these morphological features will be discussed.  相似文献   

8.
Using magnetic data from the geostationary satellites of ATS 6 and SMS/GOES series, long-period geomagnetic pulsations, Psc 4 and Psc 5, associated with geomagnetic sudden commencements (SC's) were statistically analyzed. Local time and geomagnetic latitude dependence of the occurrence, and local time dependence of the period and the amplitude were examined for 218 SC's. For transverse Psc 5 pulsations which could be observed at all local times, the period was shorter and the amplitude was smaller near noon than in the morning and evening sides. Compressional Psc 5's, which were observed mainly from about 09.00 L.T. to midnight, had larger amplitude near noon. The period seemed to be longer near noon. As for Psc 4 pulsations the period tended to be shorter near noon. Psc 4's with the largest amplitude appeared near noon, but on the whole Psc 4's in the evening side had larger amplitude. The compressional Psc occurred more frequently near the geomagnetic equator (geomagnetic latitude φm≌ 5°N) than at higher latitude (φm≌ 9° ~ 12°N). We suggest that the transverse Psc 5 pulsations can be considered to be magnetic field-line resonant oscillations excited by impulsive waves, while the compressional Psc 5's may be oscillations localized near the geomagnetic equator.  相似文献   

9.
All-sky camera observations from two stations in the inner (northern) polar cap and an auroral zone station are combined with photometer records from the polar cap station Nord in a study of the brilliant auroral display following the ssc of the storm of 7 November 1970. This display is the large, poleward expanding bulge of a substorm triggered by the ssc. It is composed of brilliant discrete forms embedded in low-intensity diffuse electron and proton aurora. The poleward edge of the diffuse electron aurora is 5° north of the discrete auroras and 3° north of the proton aurora. The intensity of the discrete aurora varies as the strength of the auroral electrojet as shown by magnetograms from auroral zone stations. Succeeding the retreating display a subvisible low-energy electron precipitation, which may be identified as the polar squall (Winningham and Heikkila, 1974) is observed over the polar cap during the main phase of the storm.In the early morning sector already existing diffuse auroras broaden towards the equator from the time of the ssc and at least during the following half hour.Ssc-triggered displays have been found (Feldstein, 1959) to withdraw from the inner polar cap as the initial (positive H) phase of the storm ends. A comparison of the records from seven low-latitude stations shows that during this particular storm the positive phase appears to be composed by two overlapping disturbances, i.e. the proper initial phase, which is generally thought to be due to compression of the inner magnetosphere and a series of positive bays accompanying the negative bays in auroral latitudes. These positive bays are observable over a great range of longitudes with a maximum of amplitude near midnight. As judged from the dayside magnetograms the initial (compression) phase ends at an early stage of the substorm. The observed coincidence between the withdrawal of the display and the cessation of the positive H phase of the storm is a consequence of the fact that the second component—the positive bays—and the auroral display over the polar cap are both signatures of the substorm activity.  相似文献   

10.
The very-low-frequency emission known as “chorus” has been studied for four Australian recording stations. The phenomenon exhibits a maximum of occurrence at about geomagnetic latitude 60° and occurs only about one-tenth as frequently at geomagnetic latitude 45°. It was never definitely observed at geomagnetic latitude 35°. Marked diurnal variations are present with morning peaks for all stations and also an evening peak at Adelaide and Hobart. Analysis of the diurnal variations suggests that two different mechanisms are involved. The average strength of chorus increases with increasing value of K-index at lower latitude stations and shows a maximum at moderate values of the index for geomagnetic latitude 61°. This is interpreted as meaning that the region of maximum average-chorus-strength moves towards lower latitudes at times of magnetic disturbance.  相似文献   

11.
In the companion paper (Lam and Rostoker, 1978) we have shown that Pc 5 micropulsations are intimately related to the behaviour and character of the westward auroral electrojet in the morning sector. In this paper we show that Pc 5 micropulsations can be regarded as LC-oscillations of a three-dimensional current loop involving downward field-aligned current flow near noon, which diverges in part to form the ionospheric westward electrojet and returns back along magnetic field lines into the magnetosphere in the vicinity of the ionosphere conductivity discontinuity at the dawn meridian. The current system is driven through the extraction of energy from the magnetospheric plasma drifting sunwards past the flanks of the magnetosphere in a manner discussed by Rostoker and Boström (1976). The polarization characteristics of the pulsations on the ground can be understood in terms of the effects of displacement currents of significant intensity which flow near the F-region peak in the ionosphere and induced currents which flow in the earth. These currents significantly influence the magnetic perturbation pattern at the Earth's surface. Model current system calculations show that the relative phase of the pulsations along a constant meridian can be explained by the composite effect of oscillations of the borders of the electrojet and variations in the intensity of current flow in the electrojet.  相似文献   

12.
13.
The morphological features of Pc5 pulsations during a solar cycle are studied using Fort Churchill data for the years 1962–1972. Some of the characteristics noted are as follows: (1) Increasing sunspot numbers show little influence on the diurnal variation of the occurrence, amplitude and the period except perhaps some noticeable change in the absolute magnitude of these parameters during different hours of the day. (2) The morning occurrence peak dominates during all phases of the solar cycle. (3) As noted earlier (Gupta 1973a), with increasing magnetic activity the day side region(s) of generation of Pc5 is found to shift closer to the subsolar point and in the midnight sector, the occurrence region (presumably the region of open and closed field lines) seemed to shift towards earlier hours with increasing magnetic activity and towards later hours with increasing sunspot numbers. (4) Despite the smaller number of data points for high magnetic activity levels the analysis indicates that the amplitude of Pc5 pulsations is directly related to all the levels of magnetic activity. (5) The periods of Pc5 pulsations show strong correlation with increasing sunspot numbers and the amplitude and occurrences are found to vary in accordance with the magnetic activity all through the cycle. (6) The annual and semi-annual variations of Pc5 parameters have been demonstrated especially for the pulsations occurring in the morning close to 8 ± 1 h LT and for those occurring near the midnight hours. (7) A suspected 27-day recurrence tendency has been clearly noticed for the occurrence, amplitude and period of Pc5 pulsations.  相似文献   

14.
The ground signatures of multiple onset substorms have been investigated in night-side magnetograms from low to high latitudes and in observations of auroral-zone electron precipitation. Pi 2 onsets at three widely spaced stations are used for accurate timing of each onset. It is found that an evening auroral arc brightens at the onset of each Pi 2 train, also in the case of weak pulsations before the first low-latitude positive bay onset. The latter onset is, on the other hand, associated with the initiation of a westward travelling surge, and field-aligned currents moving with the surge cause a similar westward movement of the magnetic signatures in subauroral and low-latitude magnetograms. At the arrival of a surge at an evening side observatory, the westward electrojet is displaced rapidly poleward, with a sharp increase in local bay activity and high-energy electron precipitation. The westward expansion of new activity appears as a continuous motion along the oval and is associated with a local poleward displacement of the westward electrojet. Consecutive surge initiation and low-latitude onsets do not, however, always occur progressively farther west. Thus, the development of the expansion phase consists of a series of intensifications and auroral surge formations at 10–20 min intervals. Near the time of maximum auroral-zone bay activity and apparently also when maximum westward extent is reached, the whole nighttime oval seems to be shifted poleward. Our findings are thus not consistent with the Wiens and Rostoker (1975) northward-westward stepping model. An alternative model is therefore presented based on the fundamental role of the westward travelling surge in carrying substorm activity westward along the oval. The associated field-aligned current system will perturb the pre-existing magnetospheric current wedge and cause positive bay increases at low latitudes and westward moving magnetic signatures at subauroral stations.  相似文献   

15.
Raeder  J.  Wang  Y.L.  Fuller-Rowell  T.J.  Singer  H.J. 《Solar physics》2001,204(1-2):323-337
We present results from a global simulation of the interaction of the solar wind with Earth's magnetosphere, ionosphere, and thermosphere for the Bastille Day geomagnetic storm and compare the results with data. We find that during this event the magnetosphere becomes extremely compressed and eroded, causing 3 geosynchronous GOES satellites to enter the magnetosheath for an extended time period. At its extreme, the magnetopause moves at local noon as close as 4.9 R E to Earth which is interpreted as the consequence of the combined action of enhanced dynamic pressure and strong dayside reconnection due to the strong southward interplanetary magnetic field component B z, which at one time reaches a value of −60 nT. The lobes bulge sunward and shield the dayside reconnection region, thereby limiting the reconnection rate and thus the cross polar cap potential. Modeled ground magnetic perturbations are compared with data from 37 sub-auroral, auroral, and polar cap magnetometer stations. While the model can not yet predict the perturbations and fluctuations at individual ground stations, its predictions of the fluctuation spectrum in the 0–3 mHz range for the sub-auroral and high-latitude regions are remarkably good. However, at auroral latitudes (63° to 70° magnetic latitude) the predicted fluctuations are slightly too high. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014228230714  相似文献   

16.
We report the results of a case study of two Pi 2 pulsations observed near the eastward electrojet by the Scandinavian Magnetometer Array. The power of the two Pi 2 pulsations, calculated using a standard Fast Fourier Transform method, peaks near the centre of the eastward electrojet. For both events there is a strong latitudinal gradient in the power poleward of the equatorward border of the electrojet. The sense of polarisation is predominantly clockwise at the northern stations and anticlockwise at the southern stations although the reversal from clockwise to anticlockwise does not occur at a constant latitude. For the first event the polarisation reversal occurs at higher latitudes in the western half of the array; for the second the polarisation reversal occurs at higher latitudes at the edges of the array. The polarisation reversal does not appear to be related to the location of the eastward electrojet. Equivalent current vectors of the Pi 2 pulsations, obtained by rotating the band pass filtered data through 90°, exhibit clear vortex structures in both events. The vortices change sense of direction at half the period of the Pi 2 pulsation. A simple model for the ionospheric electric field in accord with the field line resonance theory reconstructs the basic features of the observed Pi 2 equivalent current system. We thus conclude that Pi 2 signatures in the region of the eastward electrojet and far away from the auroral break-up region are governed by the field line resonance mechanism.  相似文献   

17.
Sixty auroral absorption substorms (30 in IQSY and 30 in IASY) have been analysed on the basis of riometer-recordings taken at some 40 stations distributed over auroral, subauroral and polar cap latitudes. Synoptic maps showing isoabsorption curves have been produced every 15 min (sometimes every 5 min) of the 60 substorms; 705 maps altogether.Some of the results of the analysis are as follows.Initiation of a substorm most frequently occurs near midnight but may occur anywhere between early evening and late morning. The time of onset becomes earlier and the latitude of onset moves equatorward as the level of magnetic activity increases.The longitude expansion velocities are contained in the range 0.7–7 km/sec except for a few extreme values which exceed 20 km/sec.The auroral absorption eastward expansion velocity is smaller than the corresponding velocity of the boundary of the region of activation of the visual aurora after break up by a factor 14?12.The expansion velocity corresponds, in general, to drift velocities of electrons of energies in the range 50–300 keV but, for the extreme speeds, electron energies around 1 MeV are needed.Expansion of the absorption in the westward direction was seen in about half of the substorms studied. In about half of these, expansion along the auroral oval could be indentified, but in almost all of these cases some expansion in the auroral zone latitudes was also seen. In about an equal number of events, expansion was confined primarily to the auroral zone.The velocity of the westward expansion was about 1 km/sec along the auroral oval (i.e. approximately equal with the speed of the westward travelling surge) but about 2 km/sec along the auroral zone.The meridional expansion velocities found agree well with those measured for visual aurora (? 1 km/sec).The variability of the behaviour of different substorms is very large. To illuminate this the following may be mentioned, in addition to what has been stated above about the statistics.Although the absorption maximum practically always moves eastward from the initiation region, exceptions have been seen in which the maximum started moving west and in a later phase went eastward.Sometimes the absorption maximum stays in the injection area or very close to it, although in most cases it moves eastward into the dayside. In extreme eases it has been found to move more than 270° in the eastward direction.There are auroral absorption substorms in which injection seems to take place in more than one area simultaneously.The observations cannot all be understood in terms of gradient and curvature drift of electrons from a small area of injection only. A broad intrusion of hot plasma from the tail into the inner magnetosphere seems to be needed.No strong dependence of particle precipitation on the illumination of the upper ionosphere by sunlight was seen. The results do, therefore, not support the hypothesis of Brice and Lucas (1971) that cold plasma density increases, originating in the ionosphere, significantly increase the precipitation rate of energetic trapped particles.  相似文献   

18.
In the course of the magnetic storm of 4 September 1984, after an inverse sudden impulse (SI), geomagnetic pulsations in the Pc5-frequency range were observed at magnetometer stations in the local evening sector. They occurred at L-values of 6, and lasted for several hours, their period increasing from about 320 to 550 s. In this study, two events of enhanced activity are discussed in some detail. During the 16:00 U.T. event, a favourable position of the AMPTE/IRM spacecraft allows conjugate observations in the Northern and Southern Hemispheres and in the magnetosphere. This constellation permits a precise determination of the wave mode. During a later intensification around 18:00 U.T., the AMPTE/CCE spacecraft near local noon monitored poloidal waves, obviously driving the pulsations on the ground. Generally, the observations are consistent with the theory of field line resonance. They are interpreted as being excited by pressure variations in the solar wind. The hydromagnetic cavity mode is assumed to link the magnetopause surface motions to the field line resonances.  相似文献   

19.
Data from a low altitude polar orbiting satellite, on auroral protons >115 keV in the evening and forenoon sectors, are presented.In the forenoon sector there is a weak but fairly steady precipitation at Λ ≈ 75° during quiet conditions. This precipitation is situated at higher invariant latitudes at local noon than at local dawn and can probably be ascribed to the high energy tail of the polar cleft protons. During moderately disturbed conditions, especially during the recovery phase of geomagnetic storms, there are some seemingly more “impulsive” precipitation events at Λ ≈ 65°. During very disturbed conditions these two precipitation zones in the forenoon sector seem to merge.In the evening sector a rather sharp equatorward boundary of the main precipitation, at Λ ≈ 69° during quiet conditions, varies fairly smoothly from pass to pass. South of this boundary, at invariant latitudes around 62°, there is a steady weak drizzle from the radiation belt. Due to a longitudinal effect this drizzle, as recorded by the satellite, shows a diurnal variation.The equatorward boundaries of the main precipitation at both local times move equatorward with increasing ring current strength. When Dst gets less than about — 100nT, the poleward boundaries are found to move equatorward too. From an attempt to reveal some of the substorm-dependent changes of the precipitation it is found that an equatorward shift of the precipitation areas takes place during, or just prior to, the substorm expansive phase, accompanied by a large intensity increase in the evening sector, whereas the recovery phase is linked with a poleward expansion of the precipitation at both local times.  相似文献   

20.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号