首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the “electric field-dominant” and “conductivity-dominant” auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions.  相似文献   

2.
Several studies on the scaling properties of the near-Earth magnetosphere and auroral phenomena are reviewed. These studies employ modern analysis techniques that include fractal, multifractal, wavelet, wavelet bicoherence, and sign-singularity analyses as well as cellular automaton simulations of sandpile and avalanches. The results provide strong evidence for the multiscale, cross-scale coupling, and reorganization nature of auroral and magnetospheric phenomena, suggesting the possibility that the magnetosphere is in a forced and/or self organized critical state. Signatures of inverse cascade are found in magnetic fluctuations in current disruption events, which may indicate large-scale substorm features such as substorm current wedge and plasmoid may be evolved from small-scale plasma turbulence structures. Insights gained from these studies help to discriminate the existing competing substorm models. The multiscale properties of magnetospheric substorms are consistent with substorm models with intrinsic multiscale processes and not with substorm models with only a macroscopic process.  相似文献   

3.
为了解极光电集流在sawtooth事件期间的响应情形,本文利用北半球高纬地磁台站的磁场数据,建立了以球元基本电流系反演法求得大尺度电离层水平等效电流系分布的方法,以此研究了2000年9月30日同步轨道LANL卫星观测到的sawtooth事件期间极光电集流的变化.本文将sawtooth注入事件后极区电离层夜侧西向电集流增长的特征,与中低纬地基磁场北向分量正弯扰的特征做比较分析.两者的观测结果都表明在本sawtooth注入事件期间有电流楔的形成,且电流楔约有11 h磁地方时(MLT)的宽度.此外,中低纬磁弯扰达到最大扰动值的时间一般比高纬电集流达到最大扰动值的时间长,说明影响中低纬磁弯扰变化的电流源较丰富.  相似文献   

4.
In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called ‘mid-latitude positive bay’; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is reexamined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem.  相似文献   

5.
Radar observations of auroral zone flows during a multiple-onset substorm   总被引:1,自引:0,他引:1  
We present an analysis of ground magnetic field, ionospheric flow, geosynchronous particle, and interplanetary data during a multiple-onset substorm on 12 April 1988. Our principal results concern the modulations of the ionospheric flow which occur during the impulsive electrojet activations associated with each onset. During the first hour of the disturbance these take place every \sim12.5 min and involve the formation of a new intense westward current filament in the premidnight sector, just poleward of the preexisting extended current system driven by the large-scale flow. These filaments are \sim1 h MLT wide (\sim600 km), and initially expand poleward to a width of \sim300 km before contracting equatorward and coalescing with the preexisting current, generally leaving the latter enhanced in magnitude and/or expanded in latitude. Within the impulsive electrojets the flow is found to be suppressed to values 50–100 m s−1 or less during the first few minutes, before surging equatorward at 0.5-1.0 km s−1 during the phase of rapid coalescence. The implication is that the precipitation-induced Hall conductivity within the impulsive electrojet initially rises to exceed \sim100 mho, before decaying over a few minutes. This value compares with Hall conductivities of \sim20 mho in the quasi-steady current regions, and a few mho or less in the regions poleward of the electrojets and in the preonset ionosphere. Preliminary evidence has also been found that the flow surges propagate from midnight to the morning sector where they are associated with arrested equatorward motion or poleward contractions of the current system. These observations are discussed in terms of present theoretical paradigms of the global behaviour of fields and flows which occur during substorms.  相似文献   

6.
孙炜 《地球物理学报》1986,29(4):407-418
确定亚暴期间高纬地区的三维电流体系是磁层和电离层物理的基本问题之一,本文简述了近年来发展的根据地面地磁活动的记录及演三维电流体系的两种较新的方法:KRM(Kamide-Richmond-Matsushita)方法和K(Kisabeth)方法.在KRM方法和许多其它类似的计算中,都假定磁力线是垂直于电离层沿地球径向的直线.本文介绍了一种递推方法,可计算场向电流沿弯曲的偶极子场线流动的情况。同时,还介绍了高纬三维电流体系对亚暴期间中低纬度地磁扰动的贡献。最后介绍了在计算电流体系时所需的电离层电导率模式。  相似文献   

7.
The relationship between the auroral electrojet indices (AE) and the ring current magnetic field (DR) was investigated by observations obtained during the magnetic storm on 1–3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE’). To determine AE’ during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE’) which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE’ values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE’ and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence) of saturation for minimum (maximum) AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY) was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current. ASY increases (decreases) faster during the main phase (the recovery phase) than DR. The magnetic field decay at low latitudes in the recovery phase occurs faster in the afternoon sector than at dusk.  相似文献   

8.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   

9.
Insignificant geomagnetic disturbances, which originated during the experimental injection of high-power radio pulses into the magnetosphere-ionosphere system with the help of an HF transmitter of the Sura heating facility, are considered. The experiment was performed at 1840–1900 UT on October 2, 2007 (~2100 MLT) at geomagnetic latitudes close to the zone of generation of the current wedge westward branch, responsible for geomagnetic substorms. The series of two magnetic microsubstorms, with a sudden initial pulse and an insignificant delay relative to the facility switching, was observed at 1840–2000 UT. A disturbance was registered at many stations in the Northern Hemisphere as a global event. The equivalent ionospheric current system of an initial pulse was similar to such a system of the westward auroral surge and had an intensity maximum at Karpogory magnetic observatory, which is the closest station to the Sura facility. Under the conditions of a quiet solar wind and low planetary geomagnetic activity, the AE auroral index correlated with the interplanetary medium parameters (the correlation coefficient reached 0.65) at 1710–2000 UT. It has been confirmed that an initial geomagnetic pulse is generated as a result of radiowave injection. The arguments for and against the generation of microsubstorms due to stimulated precipitation of magnetospheric electrons, as well as the assumption that the geoeffective impact of the interplanetary medium is intensified during the injection of high-power radiowaves near the zone where the westward branch of the current wedge of magnetospheric substorms is generated, are considered.  相似文献   

10.
Effect of the equatorward shift of the eastward and westward electrojets during magnetic storms main phase is analyzed based on the meridional chains of magnetic observatories EISCAT and IMAGE and several Russian observatories (geomagnetic longitude ≈110°, corrected geomagnetic latitudes 74°>φ>51°.) Magnetic storms of various Dst index intensity where the main phase falls on 1000 UT - 2400 UT interval were selected so that one of the observatory chains was located in the afternoon - near midnight sector of MLT. The eastward electrojet center shifts equatorward with Dst intensity increase: when Dst ≈ −50 nT the electrojet center is located at φ ≈ 62°, when Dst ≈ −300 nT it is placed at φ ≈ 54°. The westward electrojet center during magnetic storms main phase for intervals between substorms shifts equatorward with Dst increase: at φ ≈ 62° when Dst ≈ −100 nT and at φ ≈ 55° when Dst ≈ −300 nT. During substorms within the magnetic storms intervals the westward electrojet widens poleward covering latitudes φ ≈ 64°–65°. DMSP (F08, F10 and F11) satellite observations of auroral energy plasma precipitations at upper atmosphere altitudes were used to determine precipitation region structure and location of boundaries of various plasma domains during magnetic storms on May 10–11, 1992, February 5–7 and February 21–22, 1994. Interrelationships between center location, poleward and equatorward boundaries of electrojets and characteristic plasma regions are discussed. The electrojet center, poleward and equatorward boundaries along the magnetic observatories meridional chain were mapped to the magnetosphere using the geomagnetic field paraboloid model. The location of auroral energy oxygen ion regions in the night and evening magnetosphere is determined. Considerations are presented on the mechanism causing the appearance in the inner magnetosphere during active intervals of magnetic storms of ions with energy of tens KeV. In the framework of the magnetospheric magnetic field paraboloid model the influence of the ring current and magnetospheric tail plasma sheet currents on large-scale magnetosphere structure is considered.  相似文献   

11.
The connection between rapid increases in the intensity of electrons with energies >0.3 MeV and magnetospheric substorms was studied for the first time by measurements of energetic electrons on the low-orbit SERVIS-1 satellite. In addition to the well-known process of radial diffusion detected at the recovery phase, the increases during a period of time no longer than 1.5 h at the main phase of six magnetic storms in a channel of 0.3–1.7 MeV (in three of them, in a channel of 1.7–3.4 MeV) were measured. An analysis of auroral zone magnetograms demonstrated that the increases occurred at the instant of magnetospheric substorm activation. A conclusion is made that the increases are caused by the radial injection of electrons by a pulse electric field induced during substorm activations. Pulse injections are shown to be one of the main mechanisms of electron radiation belt completion in the inner magnetosphere and, in combination with moderate radial diffusion, to be responsible for the appearance of large fluxes of energetic electrons (“killers”) in the magnetosphere after magnetic storms.  相似文献   

12.
Spatial distributions of pressure and fluxes of precipitating magnetospheric plasma particles were constructed for the strong magnetic storm of December 14 and 15, 2006. The calculations were performed using a model developed by E.A. Ponomarev. Geotail and ACE satellite data were used to specify realistic initial and boundary conditions. The model results were compared with the spatial distribution of the field of geomagnetic disturbances recorded by ground-based magnetic observatories during the storm. The results show that the model (in its current form) provides good agreement between latitudinal displacements of electron precipitations and auroral electrojets but fails to reflect their longitudinal structure. The model fails to yield the strong westward electrojet observed by all auroral zone observatories during the main phase of the magnetic storm.  相似文献   

13.
极区地磁亚暴等效电流体系的本征模分析   总被引:1,自引:1,他引:0  
亚暴是空间天气预报非常关注的磁层事件一般来说, 每一次亚暴事件都包含“直接驱动过程”和“卸载过程”两物理机制的贡献, 它们分别对应磁层大尺度对流过程和亚暴电流楔形成过程为了定量地分离这两种过程所对应的电流体系, 本文使用自然正交分量法对每一时刻的极区电流体系进行本征模分析, 试图得到两种过程所对应的特征电流图案及其随时间的变化分析结果表明, 第一本征模的电流图案呈双涡结构, 对应于“直接驱动过程”, 第二本征模的电流图案反映了极光带西向电集流的基本特征, 对应于“卸载过程”前者无论在平静期间, 还是亚暴期间始终存在, 其强度从亚暴增长相开始增加, 膨胀相期间快速增长, 恢复相期间逐渐减小; 后者在平静期间几乎为零, 亚暴增长相期间变化不大, 直到膨胀相开始才迅速增长, 恢复相期间逐渐减小根据上述分解, 可以对目前普遍用来描述亚暴强度的AE指数进行修正, 得到分别反映对流过程和电流楔形成过程的相应指数  相似文献   

14.
Measurements of the plasma parameters and magnetic field upon magnetopause crossings by the THEMIS-А satellite during the large magnetic storm of November 14, 2012, are analyzed. The main specific feature of this event is the magnetopause crossing at the time of the magnetic-storm maximum. An imbalance of total pressure on the magnetopause reaching up to ~40% has been observed. An abrupt turn of the magnetic field immediately on the magnetopause is recorded. Inside the magnetosphere, plasma motions have been observed, both along the magnetopause and inward, at velocities of ~100–300 km/s. Variations in geomagnetic parameters are analyzed before and after the crossing. It is shown that specific features of the observed crossing may be associated with a sharp change in the magnetospheric current systems during the magnetospheric substorm.  相似文献   

15.
The specific features of the diurnal and seasonal variations in different characteristics of two Pi2 geomagnetic pulsation groups (observed during magnetospheric substorms and when these substorms are absent) and the pulsation generation geophysical conditions have been experimentally studied based on observations at the Borok midlatitude observatory. It has been indicated that the dynamics of the occurrence frequency of Pi2 substorm and nonsubstorm bursts and their amplitude, duration, and intervals between peaks depending on the local time and season is identical in many respects. It has been found that substorm Pi2 bursts are mostly observed when the IMF is sunward and the solar wind electric field (Ey) is positive, whereas nonsubstorm bursts are observed when the IMF is antisunward and Ey is negative. The fundamental differences in the diurnal and seasonal variations in index α, which characterizes the slope of the distribution function of the two-group Pi2 burst amplitudes, have been revealed. It has been found that the index α value substantially depends on Ey and the IMF longitude (ψ). It has been assumed that the plasma sheet turbulence of the metastable magnetotail is responsible for reconnection and the generation of substorm and nonsub-storm Pi2 pulsation bursts.  相似文献   

16.
The dawn and dusk electrojet response to substorm onset   总被引:1,自引:0,他引:1  
We have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetospheres reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.  相似文献   

17.
18.
{1} The first phase of the superstorm on April 6, 2000 was studied based on the analogy between systems of magnetospheric currents and wire electric currents. The conventional dataset supplemented with maps of ionospheric equivalent currents (ECs) and field-aligned currents (FACs) was also used. The application of this analogy made it possible to introduce spatial R.N inhomogeneities into FAC distributions in the two-dimensional ionosphere and three types of meridional current systems, MCS-0, MCS-1, and MCS-2, providing electric coupling of three Iijima and Potemra FAC Regions. This basis was used to describe the formation and observed dynamics of ionospheric auroral electrojets and three-dimensional current systems in a disturbed magnetosphere-ionosphere system. The results the modify known paradigms of the substorm current wedge (SCW). A new important fact was noted: simultaneously with the beginning of the disturbance expansion phase due to the stepwise growth in the dynamic pressure of the solar wind (SW), the stepwise growth in the area of polar cap and in the electromagnetic energy flux coming to the magnetosphere from the SW were observed.  相似文献   

19.
The characteristics and interplanetary excitation conditions of isolated bursts of Pi2 geomagnetic pulsations observed during the development of magnetospheric substorms (substorm Pi2) and in its absence (nonsubstorm Pi2) on the night side of the Earth are comparatively analyzed. It is shown that, regardless of the local time and season, the amplitude of isolated Pi2 substorm bursts is always higher than that of the nonsubstorm ones, and the periods and duration of the wave packets of substorm Pi2 bursts are less than those of nonsubstorms. Diurnal and seasonal variations in the characteristics of the two groups of Pi2 bursts differ in the form and position of maxima and minima. It is found that the start of excitation of isolated Pi2 bursts, during substorms and in its absence, is controlled by the preferred direction of the interplanetary magnetic field (IMF) vector perpendicular to the Sun–Earth line (angle θxB = arccos(Bx/B) → 90°). It is assumed that isolated Pi2 bursts of both groups are triggered by reorientation of the IMF vector in the ecliptic plane and the plane perpendicular to it ~15 min before their onset. The most likely source of midlatitude isolated Pi2 bursts during substorm development and in its absence are bursty bulk flows (BBFs) in the plasma sheet of the magnetospheric tail, the regularities of which coincide in many respects with the observed features of Pi2 bursts.  相似文献   

20.
A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ~ ?400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号