首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467–486, 2016.  https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.  相似文献   

2.
National borders play an important role in everyday life. Interest in border studies has increased with recent changes in geographical locations of the border or the fluctuation of the permeability of the border between some countries, such as in the European Union. Whether the nations are trying to increase traffic flow of the border or to implement stricter border control, having appropriate information of the border is crucial for effective policymaking.

The objective of this research was to identify areas of high porosity, or high permeability, for pedestrians along the southern national border region in Carinthia, Austria using terrain, land use, and road data along with geocomputational methods. Two unsupervised classification methods, the fuzzy K-means clustering and the Self-Organizing Map, were applied to segment the border into homogeneous zones according to topographic and infrastructural attributes. The fuzzy K-means clustering method was chosen for its ability to allow for a continuous approach to classification. With this method, an object can belong, with different degrees of membership, to multiple classes, which is a more realistic reflection of the natural world than discrete clustering, where each object can only belong to one class. However, the fuzzy K-means clustering method does have disadvantages, i.e. the user must determine the number of classes and the input parameters are required to be in continuous format. The second classification method, the Self-Organizing Map, is a type of artificial neural network and was chosen for its ability to automatically determine the number of classes and handle categorical data. The Self-Organizing Map is unique because it can transform high dimensional data into low dimensional display while preserving the topology and spatial distribution of the input parameters. The results of the two classification methods suggest that the fuzzy K-means classification is more effective than the Self-Organizing Map for this situation. However, more research is needed to determine the fit of these algorithms for particular spatial data classification tasks.

The results obtained from this research provide an insight into the permeability of the border region of Carinthia, Slovenia, and Italy to pedestrian traffic and can be potentially useful for decision making processes for tourism development and road transportation management in that region. Furthermore, the approach presented in this article can be applied to other national borders to identify zones permeable to pedestrian traffic.  相似文献   

3.
The Global Geodetic Observing System (GGOS) requires sub-mm accuracy, automated and continual determinations of the so-called local tie vectors at co-location stations. Co-location stations host instrumentation for several space geodetic techniques and the local tie surveys involve the relative geometry of the reference points of these instruments. Thus, these reference points need to be determined in a common coordinate system, which is a particular challenge for rotating equipment like radio telescopes for geodetic Very Long Baseline Interferometry. In this work we describe a concept to achieve automated and continual determinations of radio telescope reference points with sub-mm accuracy. We developed a monitoring system, including Java-based sensor communication for automated surveys, network adjustment and further data analysis. This monitoring system was tested during a monitoring campaign performed at the Onsala Space Observatory in the summer of 2012. The results obtained in this campaign show that it is possible to perform automated determination of a radio telescope reference point during normal operations of the telescope. Accuracies on the sub-mm level can be achieved, and continual determinations can be realized by repeated determinations and recursive estimation methods.  相似文献   

4.
Drainage networks are one of the main elements characterizing basins, and network topology and geometry form the basis of many hydrological and geomorphological models (eg Geomorphological Unitary Hydrograph). The identification and manual delineation of channel networks from maps or aerial photographs requires much time and effort. In the last two decades, algorithms and procedures for automated extraction of drainage networks from digital elevation data have been developed and implemented in many specialized software applications. Nevertheless, automatically delineated channel networks do not always show close agreement with manually delineated networks. This paper describes a comparative analysis between a drainage network automatically extracted from a gridded digital elevation model, and the drainage network delineated manually from stereographic pairs of aerial photographs. The analysis showed that the automatic extraction technique may be adequate for catchment headwaters, but is inappropriate in the middle and lower basins, especially for alluvial fans and calcareous platforms. The paper suggests improving the automatic extraction technique by adapting it to operate with different parameters for each of the geomorphological units within the catchment.  相似文献   

5.
The estimation of the zero-height geopotential level of a local vertical datum (LVD) is a key task towards the connection of isolated physical height frames and their unification into a common vertical reference system. Such an estimate resolves, in principle, the ‘ambiguity’ of a traditional crust-fixed LVD by linking it with a particular equipotential surface of Earth’s gravity field under the presence of an external geopotential model. The aim of this paper is to study the estimation scheme that can be followed for solving the aforementioned problem based on the joint inversion of co-located GPS and leveling heights in conjunction with a fixed Earth gravity field model. Several case studies with real data are also presented that provide, for the first time, precise estimates of the LVD offsets for a number of Hellenic islands across the Aegean and Ionian Sea.  相似文献   

6.
Chlorophyll a (Chl-a) has been the most commonly used biomass metric in biological oceanographic processes. Although limited to two-dimensional surfaces, remote-sensing tools have been successfully providing the most recent state of marine phytoplankton biomass to better understand bottom-up processes initiating daily marine material cycles. In this exercise, ocean color products with various time-scales, derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), were used to investigate how their bio-optical properties affect the upper-ocean thermal structure in a global ocean modeling framework. This study used a ¼-degree Hybrid Coordinate Ocean Model forced by hourly atmospheric fluxes from the Climate Forecast System Reanalysis at National Oceanic Atmospheric Administration. Three numerical experiments were prepared by combining two ocean color products – downwelling diffuse attenuation coefficients (KdPAR) and chlorophyll a (Chl-a) – and two shortwave radiant flux algorithms. These three runs are: (1) KparCLM, based on a 13-year long-term climatological KdPAR derived from SeaWiFS; (2) ChlaCLM, based on a 13-year long-term Chl-a derived from SeaWiFS; and (3) ChlaID, which uses the inter-annual time-series of monthly-mean SeaWiFS Chl-a product. The KparCLM experiment uses a Jerlov-like two-band scheme; whereas, both ChlaCLM and ChlaID use a two-band scheme that considers inherent (absorption (a) and backscattering (bb) coefficients) and apparent optical properties (downwelling attenuation coefficient (Kd) and solar zenith angle (θ, varying 0–60°)). It is found that algorithmic differences in optical parameterizations have a bigger impact on the simulated temperatures in the upper-100 m of the eastern equatorial Pacific, NINO3.4 region, than other parts of the ocean. Overall, the KdPAR-based approach estimated relatively low surface temperatures compared to those estimated from the chlorophyll-based method. In specific, this cold bias, pronounced in the upper 20–30 m, is speculated to be due to optical characteristics of the algorithm and KdPAR products, or due to nonlinear hydrodynamical processes involving displacement of mixed-layer depth. Comparisons between each experiment against Global Ocean Data Assimilation System (GODAS; Behringer and Xue 2004) analyses find that KparCLM-based simulations have lower mean differences and variabilities with higher cross-correlation coefficients compared to ChlaCLM- and ChlaID-based experiments.  相似文献   

7.
金矿遥感探测之关键在于成矿构造及铁氧化物、含羟基蚀变矿物信息的提取。以张家口下双台地区为研究区,利用ENVI 4.0图像处理软件,通过"多元数据分析+比值+主成分变换+密度分割+分类"等方法,从Landsat-7 ETM数据中提取矿化蚀变信息并抑制植被波谱干扰,方法快速、准确、有效。结果表明,利用该方法获得的矿化蚀变信息与已知矿点有很大的一致性,该方法是可行的。  相似文献   

8.
ABSTRACT

Spatial variation of Urban Land Surface Temperature (ULST) is a complex function of environmental, climatic, and anthropogenic factors. It thus requires specific techniques to quantify this phenomenon and its influencing factors. In this study, four models, Random Forest (RF), Generalized Additive Model (GAM), Boosted Regression Tree (BRT), and Support Vector Machine (SVM), are calibrated to simulate the ULST based on independent factors, i.e., land use/land cover (LULC), solar radiation, altitude, aspect, distance to major roads, and Normalized Difference Vegetation Index (NDVI). Additionally, the spatial influence and the main interactions among the influential factors of the ULST are explored. Landsat-8 is the main source for data extraction and Tehran metropolitan area in Iran is selected as the study area. Results show that NDVI, LULC, and altitude explained 86% of the ULST °C variation. Unexpectedly, lower LST is observed near the major roads, which was due to the presence of vegetation along the streets and highways in Tehran. The results also revealed that variation in the ULST was influenced by the interaction between altitude – NDVI, altitude – road, and LULC – altitude. This indicates that the individual examination of the underlying factors of the ULST variation might be unilluminating. Performance evaluation of the four models reveals a close performance in which their R2 and Root Mean Square Error (RMSE) fall between 60.6–62.1% and 2.56–2.60 °C, respectively. However, the difference between the models is not statistically significant. This study evaluated the predictive performance of several models for ULST simulation and enhanced our understanding of the spatial influence and interactions among the underlying driving forces of the ULST variations.  相似文献   

9.
Using the phase differences between satellite radar images recorded before and after an earthquake, interferometry allows mapping the projection along the line of sight (LOS) of the ground displacement. Acquisitions along multiple LOS theoretically allow deriving the complete deformation vector; however, due to the orbit inclination of current radar satellites, precision is poor in the north-south direction. Moreover, large deformation gradients (e.g., fault ruptures) prevent phase identification and unwrapping and cannot be measured directly by interferometry. Subpixel correlation techniques using the amplitude of the radar images allow measuring such gradients, both in slant-range and in azimuth. In this letter, we use a correlation technique based on the maximization of coherence for a radar pair in interferometric conditions, using the complex nature of the data. In the case of highly coherent areas, this technique allows estimating the relative distortion between images. Applied to ASAR images acquired before and after the December 26, 2003 Bam earthquake (Iran), we show that the near-field information retrieved by this technique is useful to constrain geophysical models. In particular, we confirm that the major gradients of ground displacement do not occur across the known fault scarp but approximately 3 km west of it, and we also estimate directly the amplitude of right lateral slip, while retrieving this value from interferometry requires passing through the use of a model for the earthquake fault and slip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号