首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cosmogenic isotope (10Be and 26Al) surface exposure dating has been applied to valley‐axis and hillslope stone runs (relict periglacial block streams) and their source outcrops in the Falkland Islands, South Atlantic. The data indicate that stone runs are considerably older landforms than previously envisaged and afford no evidence that they are a product of the Last Glacial Maximum; the samples range in apparent 10Be age from 42k to 731k yr BP, but some of these are minima. The results indicate that valley‐axis stone runs may be up to 700–800k yr old, have simple exposure histories and are composite landforms that developed over several cold stages. Analyses of some hillslope and outcrop samples also demonstrate simple exposure histories with 10Be ages from 42k to 658k yr BP. In contrast, isotopic ratios from other hillslope and outcrop samples reveal they have had a complex exposure history involving periods of burial or shielding; the samples range in 10Be age from 59k to 569k yr BP and these are regarded as minimum age estimates. Larger stone runs may be older than smaller runs and there is a possibility that stone runs older than 800k yr exist in other parts of the Falklands. The assertion that glaciation in the Falklands was restricted to the highest uplands is supported by the data, and the potential for age determination of other boulder‐strewn and bedrock landforms, using cosmogenic isotope analysis, in order to extend the geochronology of Quaternary events and processes is noted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.

近年来新提出的岩石表层光释光测年技术为研究基岩在十年-万年时间尺度上的侵蚀速率提供了一种可能。该方法基本原理是暴露于太阳光下的岩石表层光释光信号会被逐渐晒退,其信号晒退的深度与岩石暴露时间以及岩石的侵蚀速率相关。因此,利用岩石表层残留光释光信号与信号深度、暴露时间以及侵蚀速率的定量关系,可以推算出该岩石的暴露年龄或者侵蚀速率。虽然前人已通过理论公式推导,为获取漂砾或基岩的稳态侵蚀速率提供了一种途径,但是该途径获得的稳态侵蚀速率为岩石的最大可达侵蚀速率,不一定是实际侵蚀速率。本次研究对前人的方法提出了两项优化和改进:第一,在岩石表层光释光测年技术中,对半饱和深度的误差提出了一种量化方式,而半饱和深度误差的量化为进一步比较不同岩石的光释光信号晒退程度提供了便利;第二,通过将样品的半饱和深度、误差和宇宙成因核素10Be年龄投影到不同侵蚀速率下半饱和深度与时间的关系模拟图中,进而获得样品的实际侵蚀速率。因此,优化后的方法可以有效地避免侵蚀速率的高估,为获得岩石十年-万年时间尺度上的实际侵蚀速率提供了一种新的可行途径。

  相似文献   

4.
5.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Egesen moraines throughout the Alps mark a glacial advance that has been correlated with the Younger Dryas cold period. Using the surface exposure dating method, in particular the measurement of the cosmogenic nuclide 10Be in rock surfaces, we attained four ages for boulders on a prominent Egesen moraine of Great Aletsch Glacier, in the western Swiss Alps. The 10Be dates range from 10 460±1100 to 9040±1020 yr ago. Three 10Be dates between 9630±810 and 9040±1020 yr ago are based upon samples from the surfaces of granite boulders. Two 10Be dates, 10 460±1100 and 9910±970 yr ago, are based upon a sample from a quartz vein at the surface of a schist boulder. In consideration of the numerous factors that can influence apparently young 10Be dates and the scatter within the data, we interpret the weighted mean of four boulder ages, 9640±430 yr (including the weighted mean of two 10Be dates of the quartz vein), as a minimum age of deposition of the moraine. All 10Be dates from the Great Aletsch Glacier Egesen moraine are consistent with radiocarbon dates of nearby bog‐bottom organic sediments, which provide minimum ages of deglaciation from the moraine. The 10Be dates from boulders on the Great Aletsch Glacier Egesen moraine also are similar to 10Be dates from Egesen moraines of Vadret Lagrev Glacier on Julier Pass, in the eastern Swiss Alps. Both the morphology of the Great Aletsch Glacier Egesen moraine and the comparison with 10Be dates from the inner Vadret Lagrev Egesen moraine support the hypothesis that the climatic cooling that occurred during the Younger Dryas cold episode influenced the glacial advance that deposited the Great Aletsch Glacier Egesen moraine. Because of the large size and slow response time of Great Aletsch Glacier, we suggest that the Great Aletsch Glacier Egesen moraine was formed during the last glacial advance of the multiphased Egesen cold period, the Kromer stage, during the Preboreal chron. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The extent of the last British–Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23–19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice‐free. An alternative model implies that these three areas were ice‐covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
《Geodinamica Acta》2013,26(1-2):21-35
The Voltri Massif underwent a polyphasic tectono-metamorphic evolution that records both the Alpine and part of the Apennine deformation events. So this is a key-area to investigate the relationships between Alpine and Apennine deformation events.

This paper focus on the upper crustal deformations (UCD) that characterize the last stages of the tectonics of the Voltri Massif. In the Voltri Massif UCD are characterized by the superpositions of ductile, brittle-ductile and brittle structures that can be attributed to three main tectonic events (from D3 to D5). The oldest UCD event (D3) developed folds and reverse shear zones under ductile to brittle-ductile conditions. Main compressive NW-SE oriented regime characterized D3 event. Brittle-ductile to brittle reverse shear zones and important strike-slip/transpressive systems overprinted D3 structures. This D4 event was significant at the regional scale and occurred under main transpressive, NE-SW oriented, regime. The latest normal and transtensional brittle structures, that formed during UCD D5 event, locally reactivated the older structures.  相似文献   

11.
自20世纪80年代以来,得益于高能加速器质谱的发展及其分析精度的提高,TCN测年技术得到了快速发展,并被成功应用于解决诸多领域关键性的年代学问题研究中,对地学的发展也起到了革命性的推动作用。TCN测年由测年靶标制备、AMS测量及数据分析等步骤组成。其中测年靶标制备直接影响AMS的测量结果,进而影响可靠年代学框架的建立与古气候环境的重建。测年靶标制备首先是代表性样品的采集,继而是所用靶标矿物的提纯,再者是所测元素的分离提取,最后是靶标压制。此处以第四纪冰川研究中应用较为广泛的TCN放射性核素10Be与26Al为例,结合冰川侵蚀与沉积地貌的分布及其特征,从样品采集、石英提纯、10Be与26Al核素的分离提取及最后的靶标压制等方面展开论述,以期为初涉第四纪冰川研究的学者提供TCN测年靶标制备的理论指导,同时也为地学其他研究领域该测年技术的应用提供参考。  相似文献   

12.
冰川漂砾的形成年代通常难以直接测定,并且漂砾形成以后是否被再次搬运或者移动过,更是无法知道。本文研究发现,通过测试砾石不同部位的宇生同位素,不仅可以测定砾石形成的时代,而且可以确定砾石再次被搬运或者被翻转的年代,从而恢复砾石运动的历史。本文以石英中生成的宇生同位素^10Be,对青藏高原东南部海子山的冰川漂砾进行了探讨,结果表明该砾石形成于倒数第二次冰期(186~128ka BP之间),在末次冰期中再次被冰川搬运,使之反转。该方法不局限于^10Be和冰川漂砾,也适用于其他陆面岩石中生成的宇生同位素以及其他成因的石块或者砾石。因此为探讨冰川作用、泥石流活动、重力崩塌等过程提供了一种重要的方法和技术途径。  相似文献   

13.
黄费新 《地质与勘探》2020,56(5):1057-1064
在以往研究中,原地生成宇宙成因核素测年技术虽然理论上可以利用两种核素(如10Be和26Al)联立方程组同时解出暴露年龄和侵蚀速率,但在实践中却常采用单种核素(常用10Be)分别解出最小暴露年龄和最大侵蚀速率,26Al数据只用于辅助判断。这主要是因为受目前误差水平限制,10Be和26Al的测试数据结果,常常并未能达到联立两个方程解出暴露年龄和侵蚀速率两个参数的精度(当然也有其他因素影响),这在投影图上常表现为被认为只有一次性暴露历史的样品,投影结果在稳态侵蚀岛之外,只有加上误差,才能进入或靠近稳态侵蚀岛。同理,在推导出包含生成速率加速率的计算等式后,虽然理论上抬升区长期暴露的样品也能够利用两种核素(如10Be和26Al)同时解出侵蚀速率和抬升速率,但实践上10Be和26Al浓度投影结果可能并未在抬升的正常投影区(稳态侵蚀岛上曲线附近),从而解出的侵蚀速率和抬升速率合理性存疑。对此,参考计算最大侵蚀速率的原理,提出利用长期暴露样品的10Be浓度来解出抬升区地表最大抬升速率的计算方法(,从而可以对碰撞造山抬升区的抬升速率上限进行限定。  相似文献   

14.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Rockfalls and rock avalanches are a recurrent process in high mountain areas like the Mont Blanc massif. These processes are surveyed due to the hazard they present for infrastructure and alpinists. While rockfalls and rock avalanches have been documented for the last 150 years, we know very little about their frequency since the Last Glacial Maximum (LGM). In order to improve our understanding, it is imperative to date them on a longer timescale. A pilot campaign using Terrestrial Cosmogenic Nuclide (TCN) dating of five samples was carried out in 2006 at the Aiguille du Midi (3842 m a.s.l.). In 2011, a larger scale study (20 samples) was carried out in five other test sites in the Mont Blanc massif. This paper presents the exposure ages of the 2011 TCN study as well as the updated exposure ages of the 2006 study using newer TCN dating parameters. Most of these exposure ages lie within the Holocene but three ages are Pleistocene (59.87?±?6.10 ka for the oldest). A comparison of these ages with air temperature and glacier cover proxies explored the possible relationship between the most active rockfall periods and the warmest periods of the Holocene: two clusters of exposure ages have been detected, corresponding to the Middle Holocene (8.2–4.2 ka) and the Roman Warm Period (c. 2 ka) climate periods. Some recent rockfalls have also been dated (<?0.56 ka).  相似文献   

16.
17.

青藏高原夷平面形成年代是确定高原起始隆升时代和抬升幅度的重要证据。青藏高原东北缘祁连山地区4100~4300 m的海拔高度上保留有大片平坦地形面构成的夷平面,地质与地貌调查表明,夷平面切削古生代花岗岩类侵入体及晚古生代-古近纪地层,被夷平的最新地层为始新世-渐新世火烧沟组。祁连山抬升导致河流下切与断陷作用并形成深切河谷及断陷盆地,充填于古河谷及断陷盆地中的渐新世-中新世白杨河组开始沉积时代,代表了夷平作用过程的终止年代及导致夷平面解体的构造隆升时代。29个ESR测年数据表明,白杨河组沉积时代为34.4~11.89 Ma。由此推论,祁连山夷平面形成于始新世末(34 Ma之前),形成时其高度在1000 m左右,34 Ma左右祁连山夷平面开始解体并快速抬升。

  相似文献   

18.
In the Western Alps, some recent scarps were previously interpreted as surface ruptures of tectonic reverse and normal faults that agree with microseismicity and GPS measurements. Our analysis shows that in fact there are hundreds of recent scarps, up to 30 m high and 2.1 km long, with only pure normal motions. They share the same characteristics as typical sackung scarps. The scarps are mainly uphill facing, parallel to the ridge crests and the contour lines. They are relatively short (less than 2.1 km) with respect to tectonic fault ruptures, and organized in swarms. They cut screes and relict rock glaciers with a slow (commonly 1 mm/year) average slip rate. In the Aiguilles Grives massif these sackung scarps clearly express the gravitational toppling of sub-vertical bedding planes in hard rocks. In contrast, the Belledonne Outer Crystalline Massif exhibits scarps that stem from the gravitational reactivation of conjugate tectonic faults. The recent faults extend to about 1600 m beneath the Rognier ridge crest, but are always above the valley floor. The main scarp swarm is 9.2 km long and constitutes the largest sackung ever described in the Western Alps. 10Be dating of a scarp and offset surfaces shows that > 4 m slip may have occurred rapidly (in less than 3800 years) sometimes between the end of the glaciation and 8800 ± 1900 years ago. This dating, together with the location of some faults far from the deep glacial valleys, suggests that sagging might have been triggered by strong earthquakes during a post-glacial period of probably enhanced seismicity. The Belledonne and Synclinal Median faults (just beneath the Rognier sackung) could have been the sources of this seismicity.  相似文献   

19.
We tested a new hybrid method for the evaluation of seismic hazard. A recently proposed fault segmentation and earthquake recurrence model of peninsular Italy suggests that the interval for which the local historical catalogue is complete is shorter than the mean recurrence time of individual large faults (1000 years), or at the most comparable. These new findings violate the fundamental assumption of historical probabilistic seismic hazard methods that the historical record is representative of the activity of all the seismogenic sources. The hybrid method we propose uses time-dependent modelling of the major earthquakes and catalogue-based historical probabilistic estimates for all minor events. We assume that the largest earthquakes are characteristic for individual discrete fault segments, model their probability of occurrence by a renewal process and compute the shaking associated with each of them with a simplified procedure. Then we calculate the probability of exceeding a given threshold of peak ground acceleration for specific sites as the aggregate probability of occurrence of large characteristic earthquakes and minor shocks. We apply the method to the Calabrian Arc (Southern Italy) performing the calculations for five major towns. The exposure to seismic hazard of Reggio Calabria, Catanzaro and Vibo Valentia, which locate close to recently activated large faults, decreases with respect to traditional time-independent estimates. On the contrary, an increase of seismic hazard is obtained for Castrovillari, which locates in an area where large faults displaying Holocene activity have been recently recognized but no significant earthquake is reported in the historical catalogue. Cosenza has the highest probability to experience a significant peak ground acceleration with both the new hybrid and the traditional approaches. We wish to stress that the present results should be interpreted only in terms of the differences between the new hybrid and the traditional approaches, not for their absolute values, and that they are not intended to be used for updating or modifying the current national seismic zonation.  相似文献   

20.
Calcitic flowstones are present in fractures of a Pleistocene breccia near Innsbruck, Austria, and record periods of carbonate precipitation in the unsaturated zone between 101,500 ± 1500 and 70,300 ± 1800 yr, constrained by U-series disequilibrium dates. The occurrence of these speleothems, their low carbon isotopic composition, and the lack of infiltrated siliciclastic material demonstrate that the central Inn valley - which harbored one of the most extensive valley glaciers during the last glacial maximum - was ice-free during Marine Isotope Stages 5c to 5a. Climatically warm periods are separated by distinct drops in the oxygen isotopic composition of the speleothem calcite, attributed to strong and possibly seasonally biased atmospheric cooling. During these intervening stadials, which mirror those identified in the Greenland ice cores and marine sea-surface temperature records, calcite deposition apparently came to a halt, but the Inn Valley remained ice-free. The youngest calcite layer formed between ∼74,000 and ∼70,000 yr and places a maximum age limit on the likely expansion of alpine glaciers during the Marine Isotope Stage 5/4 transition, consistent with other speleothem records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号