首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topographic–isostatic masses represent an important source of gravity field information, especially in the high-frequency band, even if the detailed mass-density distribution inside the topographic masses is unknown. If this information is used within a remove-restore procedure, then the instability problems in downward continuation of gravity observations from aircraft or satellite altitudes can be reduced. In this article, integral formulae are derived for determination of gravitational effects of topographic–isostatic masses on the first- and second-order derivatives of the gravitational potential for three topographic–isostatic models. The application of these formulas is useful for airborne gravimetry/gradiometry and satellite gravity gradiometry. The formulas are presented in spherical approximation by separating the 3D integration in an analytical integration in the radial direction and 2D integration over the mean sphere. Therefore, spherical volume elements can be considered as being approximated by mass-lines located at the centre of the discretization compartments (the mass of the tesseroid is condensed mathematically along its vertical axis). The errors of this approximation are investigated for the second-order derivatives of the topographic–isostatic gravitational potential in the vicinity of the Earth’s surface. The formulas are then applied to various scenarios of airborne gravimetry/gradiometry and satellite gradiometry. The components of the gravitational vector at aircraft altitudes of 4 and 10 km have been determined, as well as the gravitational tensor components at a satellite altitude of 250 km envisaged for the forthcoming GOCE (gravity field and steady-state ocean-circulation explorer) mission. The numerical computations are based on digital elevation models with a 5-arc-minute resolution for satellite gravity gradiometry and 1-arc-minute resolution for airborne gravity/gradiometry.  相似文献   

2.
不同于当前广泛使用的空域法、时域法、直接解法,本文尝试采用Torus方法处理GOCE实测数据,利用71 d的GOCE卫星引力梯度数据反演了200阶次GOCE地球重力场模型,实现了对参考模型的精化。首先,采用Butterworth零相移滤波方法加移去—恢复技术,处理引力梯度观测值中的有色噪声,并利用泰勒级数展开和Kriging方法对GOCE卫星引力梯度数据进行归算和格网化,计算得到了名义轨道上格网点处的引力梯度数据。然后,利用2D-FFT技术和块对角最小二乘方法处理名义轨道上数据,获得了200阶次的GOCE地球重力场模型GOCE_Torus。利用中国和美国的GPS/水准数据进行外部检核结果说明,GOCE_Torus与ESA发布的同期模型的精度相当;GOCE_Torus模型与200阶次的EGM2008模型相比,在美国区域精度相当,但在中国区域精度提高了4.6 cm,这充分体现了GOCE卫星观测数据对地面重力稀疏区的贡献。Torus方法拥有快速高精度反演卫星重力场模型的优势,可以在重力梯度卫星的设计、误差分析及在轨快速评估等方面得到充分应用。  相似文献   

3.
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63–84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10–30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.  相似文献   

4.
利用GOCE模拟观测反演重力场的Torus法   总被引:1,自引:1,他引:0  
在介绍Torus方法反演地球重力场模型的基本原理和方法的基础上,基于圆环面上均匀分布的卫星引力梯度模拟观测值解算了200阶次的地球重力场模型,在无误差情况下,Torus方法解算模型的阶误差RMS小于10-16,验证了该方法的严密性。利用61dGOCE卫星轨道上无误差的模拟引力梯度观测值解算了200阶次的地球重力场模型,分析了格网化误差、极空白对解算精度的影响,迭代3次后,在不考虑低次系数情况下,模型的大地水准面阶误差和累积误差均较小,最大值仅为0.022mm和0.099mm。在沿轨卫星引力梯度模拟数据中加入5mE/Hz1/2的白噪声,基于Torus方法和空域最小二乘法解算了200阶次的地球重力场模型,Torus方法的精度略低于空域最小二乘法的精度,在不考虑低次项的情况下,两种方法解算模型的大地水准面阶误差最大值分别为1.58cm和1.45cm,累积误差最大值分别为6.37cm和5.55cm。但由于采用了二维快速傅里叶技术和块对角最小二乘法,极大地提高了计算效率。本文数值结果说明Torus方法是一种独立有效的方法,可用于GOCE任务海量卫星引力梯度观测值反演重力场的快速解算。  相似文献   

5.
 The downward continuation of the harmonic disturbing gravity potential, derived at flight level from discrete observations of airborne gravity by the spherical Hotine integral, to the geoid is discussed. The initial-boundary-value approach, based on both the direct and inverse solution to Dirichlet's problem of potential theory, is used. Evaluation of the discretized Fredholm integral equation of the first kind and its inverse is numerically tested using synthetic airborne gravity data. Characteristics of the synthetic gravity data correspond to typical airborne data used for geoid determination today and in the foreseeable future: discrete gravity observations at a mean flight height of 2 to 6 km above mean sea level with minimum spatial resolution of 2.5 arcmin and a noise level of 1.5 mGal. Numerical results for both approaches are presented and discussed. The direct approach can successfully be used for the downward continuation of airborne potential without any numerical instabilities associated with the inverse approach. In addition to these two-step approaches, a one-step procedure is also discussed. This procedure is based on a direct relationship between gravity disturbances at flight level and the disturbing gravity potential at sea level. This procedure provided the best results in terms of accuracy, stability and numerical efficiency. As a general result, numerically stable downward continuation of airborne gravity data can be seen as another advantage of airborne gravimetry in the field of geoid determination. Received: 6 June 2001 / Accepted: 3 January 2002  相似文献   

6.
An integrated wavelet concept of physical geodesy   总被引:4,自引:1,他引:3  
For the determination of the earth's gravity field many types of observations are nowadays available, including terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradio-metry, etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e. linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth's surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth's models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry and combined satellite-to-satellite tracking and gradiometry. Received: 28 February 1997 / Accepted: 17 November 1997  相似文献   

7.
地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模...  相似文献   

8.
Flight test results from a strapdown airborne gravity system   总被引:3,自引:0,他引:3  
In June 1995, a flight test was carried out over the Rocky Mountains to assess the accuracy of airborne gravity for geoid determination. The gravity system consisted of a strapdown inertial navigation system (INS), two GPS receivers with zero baseline on the airplane and multiple GPS master stations on the ground, and a data logging system. To the best of our knowledge, this was the first time that a strapdown INS has been used for airborne gravimetry. The test was designed to assess repeatability as well as accuracy of airborne gravimetry in a highly variable gravity field. An east-west profile of 250 km across the Rocky Mountains was chosen and four flights over the same ground track were made. The flying altitude was about 5.5km, i.e., between 2.5 and 5.0km above ground, and the average flying speed was about 430km/h. This corresponds to a spatial resolution (half wavelength of cutoff frequency) of 5.07.0km when using filter lengths between 90 and 120s. This resolution is sufficient for geoid determination, but may not satisfy other applications of airborne gravimetry. The evaluation of the internal and external accuracy is based on repeated flights and comparison with upward continued ground gravity using a detailed terrain model. Gravity results from repeated flight lines show that the standard deviation between flights is about 2mGal for a single profile and a filter length of 120s, and about 3mGal for a filter length of 90s. The standard deviation of the difference between airborne gravity upward continued ground gravity is about 3mGal for both filter lengths. A critical discussion of these results and how they relate to the different transfer functions applied, is given in the paper. Two different mathematical approaches to airborne scalar gravimetry are applied and compared, namely strapdown inertial scalar gravimetry (SISG) and rotation invariant scalar gravimetry (RISG). Results show a significantly better performance of the SISG approach for a strapdown INS of this accuracy class. Because of major differences in the error model of the two approaches, the RISG method can be used as an effective reliability check of the SISG method. A spectral analysis of the residual errors of the flight profiles indicates that a relative geoid accuracy of 23cm over distances of 200km (0.1 ppm) can be achieved by this method. Since these results present a first data analysis, it is expected that further improvements are possible as more refined modelling is applied. Received: 19 August 1996 / Accepted: 12 May 1997  相似文献   

9.
The GOCE satellite observes gravity gradients with unprecedented accuracy and resolution. The GOCE observations are reliable within a well-defined measurement bandwidth. In this study, different finite and infinite impulse response filters have been designed to obtain the demanded pass. Exhaustive time and frequency domain investigations prove that the proposed infinite impulse response filter can be a real competitor of the existing solution of the filtering problem.  相似文献   

10.
卫星重力测量是当前探测全球一致、高精度和高分辨率地球重力场的高效技术手段,主要包括高低卫星跟踪卫星测量(satellite-to-satellite tracking in high-low mode, SST-hl)、低低卫星跟踪卫星测量(satellite-to-satellite tracking in low-low mode, SST-ll)和卫星重力梯度测量(satellite gravity gradiometry,SGG)。系统总结了利用卫星重力测量技术(包括SST-hl、SST-ll和SGG及多模式组合)反演地球重力场的主要方法,评述了利用挑战性小卫星有效载荷(challenging mini-satellite payload, CHAMP)、重力恢复与气候实验(gravity recovery and climate experiment, GRACE)/ GRACE继任者(GRACE follow-on, GRACE -FO)和地球重力场和海洋环流探索器(gravity field and steady-state ocean circulation explorer, GOCE)卫星重力数据构建静态和时变重力场模型的最新进展,并对当前具有代表性的地球重力场模型精度进行了分析和评估,以期对未来的地球重力场研究及其地学应用提供参考。  相似文献   

11.
航空重力测量的滤波处理及最佳波长分辨率的探讨   总被引:1,自引:0,他引:1  
谢军  黄建业 《测绘工程》2001,10(3):35-37
根据航空重力测量的数据性质,对其滤波处理中最佳滤长分辨率的确定,提出了一种采用静态飞行数据进行检测的方法-即利用静态飞行数据处理后的重力异常误差平方和最小的原则。并对其在航空重力测量中的必要性做了检验和说明。  相似文献   

12.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

13.
Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain independent external quality parameters and to assess the current performance of these models, a set of independent tests based on satellite orbit determination and geoid comparisons is applied. Both test methods can be regarded as complementary because they either investigate the performance in the long wavelength spectral domain (orbit determination) or in the spatial domain (geoid comparisons). The test procedure was applied to the three GOCE gravity field solutions and to a number of selected pre-launch models for comparison. Orbit determination results suggest, that a pure GOCE gravity field model does not outperform the multi-year GRACE gravity field solutions. This was expected as GOCE is designed to improve the determination of the medium to high frequencies of the Earth gravity field (in the range of degree and order 50 to 200). Nevertheless, in case of an optimal combination of GOCE and GRACE data, orbit determination results should not deteriorate. So this validation procedure can also be used for testing the optimality of the approach adopted for producing combined GOCE and GRACE models. Results from geoid comparisons indicate that with the 2 months of GOCE data a significant improvement in the determination of the spherical harmonic spectrum of the global gravity field between degree 50 and 200 can be reached. Even though the ultimate mission goal has not yet been reached, especially due to the limited time span of used GOCE data (only 2 months), it was found that existing satellite-only gravity field models, which are based on 7 years of GRACE data, can already be enhanced in terms of spatial resolution. It is expected that with the accumulation of more GOCE data the gravity field model resolution and quality can be further enhanced, and the GOCE mission goal of 1–2 cm geoid accuracy with 100 km spatial resolution can be achieved.  相似文献   

14.
The issue of combining high-resolution gravity models, based on observations taken on the Earth surface, with those derived from satellite-only observations is of increasing importance, due to the new data provided by gravity satellite missions, CHAMP, GRACE and GOCE. The paper addresses this issue with a twofold purpose. On the one hand, it is an attempt to discuss and assess general concepts, well known in literature, such as achievable resolution, regularization in the least-squares sense or in an infinite dimensional setup, combination criteria, symmetry and block diagonal structures. In particular, as for the symmetry question, a well-defined result, generalizing known facts, is derived. On the other hand, the outcomes of the general discussion are specifically applied to the combination of a high-resolution model (e.g. EGM08) with a GOCE gravity model estimated by the so-called space-wise approach. Small numerical examples are developed to clarify the property of the proposed solution.  相似文献   

15.
顾及误差频谱特性的CHZ重力仪航空应用研究   总被引:1,自引:0,他引:1  
给出了航空重力测量误差频域分析的方法,利用功率谱密度从频域分析了航空标量重力测量系统恢复重力场的能力及影响因素。介绍了CHZ重力仪的主要特点,并利用实测空中重力异常数据及机载GPS动态加速度数据,结合航空重力测量的频谱范围,分析了CHZ重力仪在不同阻尼系数下的动态性能。计算结果表明,采用合适的阻尼系数,CHZ重力仪能够被用于固定翼飞机的航空重力测量。  相似文献   

16.
Satellite gravity missions, such as CHAMP, GRACE and GOCE, and airborne gravity campaigns in areas without ground gravity will enhance the present knowledge of the Earths gravity field. Combining the new gravity information with the existing marine and ground gravity anomalies is a major task for which the mathematical tools have to be developed. In one way or another they will be based on the spectral information available for gravity data and noise. The integration of the additional gravity information from satellite and airborne campaigns with existing data has not been studied in sufficient detail and a number of open questions remain. A strategy for the combination of satellite, airborne and ground measurements is presented. It is based on ideas independently introduced by Sjöberg and Wenzel in the early 1980s and has been modified by using a quasi-deterministic approach for the determination of the weighting functions. In addition, the original approach of Sjöberg and Wenzel is extended to more than two measurement types, combining the Meissl scheme with the least-squares spectral combination. Satellite (or geopotential) harmonics, ground gravity anomalies and airborne gravity disturbances are used as measurement types, but other combinations are possible. Different error characteristics and measurement-type combinations and their impact on the final solution are studied. Using simulated data, the results show a geoid accuracy in the centimeter range for a local test area.  相似文献   

17.
Collocation is widely used in physical geodesy. Its application requires to solve systems with a dimension equal to the number of observations, causing numerical problems when many observations are available. To overcome this drawback, tailored step-wise techniques are usually applied. An example of these step-wise techniques is the space-wise approach to the GOCE mission data processing. The original idea of this approach was to implement a two-step procedure, which consists of first predicting gridded values at satellite altitude by collocation and then deriving the geo-potential spherical harmonic coefficients by numerical integration. The idea was generalized to a multi-step iterative procedure by introducing a time-wise Wiener filter to reduce the highly correlated observation noise. Recent studies have shown how to optimize the original two-step procedure, while the theoretical optimization of the full multi-step procedure is investigated in this work. An iterative operator is derived so that the final estimated spherical harmonic coefficients are optimal with respect to the Wiener–Kolmogorov principle, as if they were estimated by a direct collocation. The logical scheme used to derive this optimal operator can be applied not only in the case of the space-wise approach but, in general, for any case of step-wise collocation. Several numerical tests based on simulated realistic GOCE data are performed. The results show that adding a pre-processing time-wise filter to the two-step procedure of data gridding and spherical harmonic analysis is useful, in the sense that the accuracy of the estimated geo-potential coefficients is improved. This happens because, in its practical implementation, the gridding is made by collocation over local patches of data, while the observation noise has a time-correlation so long that it cannot be treated inside the patch size. Therefore, the multi-step operator, which is in theory equivalent to the two-step operator and to the direct collocation, is in practice superior thanks to the time-wise filter that reduces the noise correlation before the gridding. The criteria for the choice of this filter are investigated numerically.  相似文献   

18.
2009年GOCE卫星升空以后,卫星重力梯度数据参与解算的GOCE系列重力场模型已有多家研究机构相继公布。本文分别采用青藏地区的GPS/水准和重力异常实测数据对GOCE重力场模型进行了外部测试,并在重力异常验证过程中引入了一种新的滤波方法,验证结果表明在青藏地区GOCE重力场模型相比其它系列模型的优势在于中波段。同时,探讨了GOCE重力场模型与其他系列模型在青藏地区主要差异值的空间分布以及首次利用统计分析方法找出模型之间主要差异值的阶次分布,得出如下结论:模型之间的较大差异值在空间水平方向上主要分布在喜马拉雅山脉、天山等地形起伏较大的区域,在垂直方向上主要集中在岩石圈。  相似文献   

19.
重力梯度卫星GOCE通过搭载静电式重力梯度仪,将全球静态重力场恢复至200阶以上。目前GOCE卫星已结束寿命,亟须发展下一代更高分辨率的卫星重力梯度测量来完善200~360阶的全球静态重力场模型。原子干涉型的重力梯度测量在空间微重力环境下可获得较长的干涉时间,因此具有很高的星载测量精度,是下一代卫星重力梯度测量的候选技术之一。本文针对未来更高分辨率全球重力场测量的科学需求,提出了一种适用于空间微重力环境下的原子干涉重力梯度测量方案,其梯度测量噪声可低至0.85mE/Hz1/2。文中对不同类型的卫星重力梯度测量方案进行了重力场反演精度的对比评估,仿真结果表明,相比于现有静电式卫星重力梯度测量,原子干涉型的卫星重力梯度测量有望将重力场的恢复阶数提升至252~290阶,对应的累积大地水准面误差7~8cm,累积重力异常误差3×10-5 m/s2。  相似文献   

20.
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号