首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Optical image classification converts spectral data into thematic information from the spectral signature of each object in the image. However, spectral separability is influenced by intrinsic characteristics of the targets, as well as the characteristics of the images used. The classification process will present more reliable results when aspects associated with natural environments (climate, soil, relief, water, etc.) and anthropic environments (roads, constructions, urban area) begin to be considered, as they determine and guide land use and land cover (LULC). The objectives of this study are to evaluate the integration of environmental variables with spectral variables and the performance of the Random Forest algorithm in the classification of Landsat-8 OLI images, of a watershed in the Eastern Amazon, Brazil. The classification process used 96 predictive variables, involving spectral, geological, pedological, climatic and topographic data and Euclidean distances. The selection of variables to construct the predictive models was divided into two approaches: (i) data set containing only spectral variables, and (ii) set of environmental variables added to the spectral data. The variables were selected through nonlinear correlation analysis, with the Randomized Dependence Coefficient and the Recursive Feature Elimination (RFE) method, using the Random Forest classifier algorithm. The spectral variables NDVI, bands 2, 4, 5, 6 and 7 of the dry season and band 4 of the rainy season were selected in both approaches (i and ii). The Euclidean distance from the urban area, Arenosol soil class, annual precipitation, precipitation in February and precipitation of the wettest quarter were the variables selected from the auxiliary data set. This study showed that the addition of environmental data to the spectral data reduces the limitation of the latter, regarding the discrimination of the different classes of LULC, in addition to improving the accuracy of the classification. The addition of soil classes to spectral variables provided a reduction in errors for vegetation classification (Evergreen Forest and Cerrado Sensu Stricto), as it was able to inform about nutrient availability and water storage capacity. The study demonstrates that the addition of environmental variables to the spectral variables can be an alternative to improve monitoring in areas of ecotone in Neotropical regions.  相似文献   

2.
The goal of the OSIRIS-REx mission is to return a sample of asteroid material from near-Earth asteroid (101955) Bennu. The role of the navigation and flight dynamics team is critical for the spacecraft to execute a precisely planned sampling maneuver over a specifically selected landing site. In particular, the orientation of Bennu needs to be recovered with good accuracy during orbital operations to contribute as small an error as possible to the landing error budget. Although Bennu is well characterized from Earth-based radar observations, its orientation dynamics are not sufficiently known to exclude the presence of a small wobble. To better understand this contingency and evaluate how well the orientation can be recovered in the presence of a large 1\(^{\circ }\) wobble, we conduct a comprehensive simulation with the NASA GSFC GEODYN orbit determination and geodetic parameter estimation software. We describe the dynamic orientation modeling implemented in GEODYN in support of OSIRIS-REx operations and show how both altimetry and imagery data can be used as either undifferenced (landmark, direct altimetry) or differenced (image crossover, altimetry crossover) measurements. We find that these two different types of data contribute differently to the recovery of instrument pointing or planetary orientation. When upweighted, the absolute measurements help reduce the geolocation errors, despite poorer astrometric (inertial) performance. We find that with no wobble present, all the geolocation requirements are met. While the presence of a large wobble is detrimental, the recovery is still reliable thanks to the combined use of altimetry and imagery data.  相似文献   

3.
Comment on ‘Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA’ by S.C. Benker, R.P. Langford and T.L. Pavlis (Geocarto Int. 26:291–303, doi: 10.1080/10106049.2011.568125).  相似文献   

4.
Although poor precipitation due to delayed arrival and/or early retreat of the southwest monsoon is considered the chief architect of drought in India, heat waves may also play a crucial role in the intensification of droughts. In the Indian subcontinent, occurrence of heat waves during the pre-monsoon and high air-temperature in the subsequent monsoon season imparts thermal stress on vegetation causing degradation of vegetation health (VH). In the present study, various vegetation indices and land-use/land-cover data derived from multi-sensor satellite have been used to assess VH and agricultural drought in Gujarat during 1981–2010. This Geographical Information Systems-based study has also used heat wave and temperature data to analyze the adverse effects of high temperature on VH. The time series of Vegetation Condition Index and Temperature Condition Index (TCI) has shown that the combined influence of moisture-stress and thermal stress determines the occurrence and severity of drought, which is reflected in the Vegetation Health Index (VHI). A strong correlation among aboveground air-temperature, the TCI and the VHI indicates definite influence of thermal stress on VH. Further, a systematic variation and strong resemblance between temperature, crop yield, TCI and VHI has established the impact of thermal stress on agricultural productivity.  相似文献   

5.
A user group of the Surveying and Mapping Agencies (SMA) of the Federal States of Germany tested several datasets for the derivation of high-quality Digital Terrain Models (DTM) which were collected by laser scanning. Since the results were very promising, a standard procedure for verification and handling of the data was proposed. Because the ground points that are delivered by the contractor are the result of an automated filtering process, final editing is necessary to correct remaining misclassifications. This can be carried out using photogrammetric stereo models or through comparison of the results with large scale topographic maps. Both approaches lead to a high-quality DTM with much shorter production time and less costs as compared to the photogrammetric methods used up to now.  相似文献   

6.
The science and management of terrestrial ecosystems require accurate, high-resolution mapping of surface water. We produced a global, 30-m-resolution inland surface water dataset with an automated algorithm using Landsat-based surface reflectance estimates, multispectral water and vegetation indices, terrain metrics, and prior coarse-resolution water masks. The dataset identified 3,650,723 km2 of inland water globally – nearly three quarters of which was located in North America (40.65%) and Asia (32.77%), followed by Europe (9.64%), Africa (8.47%), South America (6.91%), and Oceania (1.57%). Boreal forests contained the largest portion of terrestrial surface water (25.03% of the global total), followed by the nominal ‘inland water’ biome (16.36%), tundra (15.67%), and temperate broadleaf and mixed forests (13.91%). Agreement with respect to the Moderate-resolution Imaging Spectroradiometer water mask and Landsat-based national land-cover datasets was very high, with commission errors <4% and omission errors <14% relative to each. Most of these were accounted for in the seasonality of water cover, snow and ice, and clouds – effects which were compounded by differences in image acquisition date relative to reference datasets. The Global Land Cover Facility (GLCF) inland surface water dataset is available for open access at the GLCF website (http://www.landcover.org).  相似文献   

7.
In this study, we compare three commonly used methods for hyperspectral image classification, namely Support Vector Machines (SVMs), Gaussian Processes (GPs) and the Spectral Angle Mapper (SAM). We assess their performance in combination with different kernels (i.e. which use distance-based and angle-based metrics). The assessment is done in two experiments, under ideal conditions in the laboratory and, separately, in the field (an operational open pit mine) using natural light. For both experiments independent training and test sets are used. Results show that GPs generally outperform the SVMs, irrespective of the kernel used. Furthermore, angle-based methods, including the Spectral Angle Mapper, outperform GPs and SVMs when using distance-based (i.e. stationary) kernels in the field experiment. A new GP method using an angle-based (i.e. a non-stationary) kernel – the Observation Angle Dependent (OAD) covariance function – outperforms SAM and SVMs in both experiments using only a small number of training spectra. These findings show that distance-based kernels are more affected by changes in illumination between the training and test set than are angular-based methods/kernels. Taken together, this study shows that independent training data can be used for classification of hyperspectral data in the field such as in open pit mines, by using Bayesian machine-learning methods and non-stationary kernels such as GPs and the OAD kernel. This provides a necessary component for automated classifications, such as autonomous mining where many images have to be classified without user interaction.  相似文献   

8.
Progress in GIScience has advanced the ability to represent and analyze view characteristics. GIS‐derived view measures requiring digital elevation surface models are used in hedonic property models to quantify the amenity value of view for parcel sales transactions. Ideally models should represent surface elevations that are temporally synchronized with parcel sale dates. Temporal synchronization for studies spanning multiple years may require significant effort. Few studies have undertaken this effort, leading us to investigate in this research the need to be temporally explicit. We evaluate two competing surface model approaches based on: (1) a single year 2000 LiDAR surface product; and (2) annual‐specific surface products for 1995–2002. Two competing view measures based on the different surface approaches are constructed for 561 parcel transactions during 1995–2002 in a coastal North Carolina county and are input into hedonic regression models. Results showed that being temporally explicit did matter in terms of finding significantly different view measures but did not matter in terms of finding significantly different effects of view on parcel sales prices. Despite mixed results for our case study, we advise that future research involving GIS‐based view measurement should consider the spatial and temporal contexts of study area development patterns when evaluating the need to be temporally explicit.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号