首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.  相似文献   

2.
Accurate estimation of forest aboveground biomass (AGB) using remote sensing is a requisite for monitoring, reporting and verification (MRV) system of the United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation. However, attaining high accuracy remains a great challenge in the diverse tropical forests. Among available technologies, l-band Synthetic Aperture Radar (SAR) estimates AGB with reasonably high accuracy in the terrestrial tropical forests. Nevertheless, the accuracy is relatively low in the mangrove forests. In this context, the study was carried out to model and map AGB using backscatter coefficients of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array l-band SAR-2 (PALSAR-2) in part of the restored mangrove forest at Mahakam Delta, Indonesia. PALSAR-2 data was acquired with image scene observation during the peak low tide on 30 July 2018 from Japan Aerospace Exploration Agency. The forest parameters namely tree height and diameter at breast height were measured from 71 field plots in September-October 2018. The parameters were used in mangrove allometry to calculate the field AGB. Finally, HV polarized backscatter coefficients of PALSAR-2 were used to model AGB using linear regression. The model demonstrated a comparatively high performance using three distinct methods viz. independent validation (R2 of 0.89 and RMSE of 23.16 tons ha−1), random k-fold cross validation (R2 of 0.89 and RMSE of 24.59 tons ha−1) and leave location out cross validation (LLO CV) (R2 of 0.88 and RMSE of 24.05 tons ha−1). The high accuracy of the LLO CV indicates no spatial overfitting in the model. Thus, the model based on LLO CV was used to map AGB in the study area. This is the first study that successfully obtains high accuracy in modeling AGB in the mangrove forest. Therefore, it offers a significant contribution to the MRV mechanism for monitoring mangrove forests in the tropics and sub-tropics.  相似文献   

3.
This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha?1 (average = 55.8 Mg ha?1); below-ground biomass ranged between 4.06 and 436.47 Mg ha?1 (average = 81.47 Mg ha?1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha?1 (average = 64.52 Mg C ha?1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.  相似文献   

4.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   

5.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   

6.
黄克标  庞勇  舒清态  付甜 《遥感学报》2013,17(1):165-179
结合机载、星载激光雷达对GLAS(地球科学激光测高系统)光斑范围内的森林地上生物量进行估测,并利用MODIS植被产品以及MERIS土地覆盖产品进行了云南省森林地上生物量的连续制图。机载LiDAR扫描的260个训练样本用于构建星载GLAS的森林地上生物量估测模型,模型的决定系数(R2)为0.52,均方根误差(RMSE)为31Mg/ha。研究结果显示,云南省总森林地上生物量为12.72亿t,平均森林地上生物量为94Mg/ha。估测的森林地上生物量空间分布情况与实际情况相符,森林地上生物量总量与基于森林资源清查数据的估测结果相符,表明了利用机载LiDAR与星载ICESatGLAS结合进行大区域森林地上生物量估测的可靠性。  相似文献   

7.

Background

Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of deforestation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aperture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia.

Results

This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% year?1 and subsequently caused a carbon loss of approximately 9 million Mg C year?1, which is equal to emissions of 33 million Mg CO2 year?1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approximately 117 Mg ha?1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%.

Conclusion

The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the proposed method and findings of this study be considered for MRV in REDD+?implementation in Malaysia.
  相似文献   

8.
The mangrove forests of northeast Hainan Island are the most species diverse forests in China and consist of the Dongzhai National Nature Reserve and the Qinglan Provincial Nature Reserve. The former reserve is the first Chinese national nature reserve for mangroves and the latter has the most abundant mangrove species in China. However, to date the aboveground ground biomass (AGB) of this mangrove region has not been quantified due to the high species diversity and the difficulty of extensive field sampling in mangrove habitat. Although three-dimensional point clouds can capture the forest vertical structure, their application to large areas is hindered by the logistics, costs and data volumes involved. To fill the gap and address this issue, this study proposed a novel upscaling method for mangrove AGB estimation using field plots, UAV-LiDAR strip data and Sentinel-2 imagery (named G∼LiDAR∼S2 model) based on a point-line-polygon framework. In this model, the partial-coverage UAV-LiDAR data were used as a linear bridge to link ground measurements to the wall-to-wall coverage Sentinel-2 data. The results showed that northeast Hainan Island has a total mangrove AGB of 312,806.29 Mg with a mean AGB of 119.26 Mg ha−1. The results also indicated that at the regional scale, the proposed UAV-LiDAR linear bridge method (i.e., G∼LiDAR∼S2 model) performed better than the traditional approach, which directly relates field plots to Sentinel-2 data (named the G∼S2 model) (R2 = 0.62 > 0.52, RMSE = 50.36 Mg ha−1<56.63 Mg ha−1). Through a trend extrapolation method, this study inferred that the G∼LiDAR∼S2 model could decrease the number of field samples required by approximately 37% in comparison with those required by the G∼S2 model in the study area. Regarding the UAV-LiDAR sampling intensity, compared with the original number of LiDAR plots, 20% of original linear bridges could produce an acceptable accuracy (R2 = 0.62, RMSE = 51.03 Mg ha−1). Consequently, this study presents the first investigation of AGB for the mangrove forests on northeast Hainan Island in China and verifies the feasibility of using this mangrove AGB upscaling method for diverse mangrove forests.  相似文献   

9.

Background

Urban trees have long been valued for providing ecosystem services (mitigation of the “heat island” effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measuring tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-wide estimate of AGB.

Results

Camden has an estimated median AGB density of 51.6 Mg ha–1 where maximum AGB density is found in pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree structure. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB was underestimated by ≤?25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncertainty when estimating AGB.

Conclusion

Over the coming century global populations are predicted to become increasingly urbanised, leading to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.
  相似文献   

10.

Background

Worldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from deforestation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations (BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist evergreen forest.

Methods

The destructive method was used, whereby 39 trees were felled and measured for diameter at breast height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear least square regression. The BEF was determined based on the relationship between bole stem dry weight and total dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.

Results

The best model was the power model with only DBH as predictor variable, which provided an estimated mean AGB of 291?±?141 Mg ha?1 (mean?±?95% confidence level). The mean wood basic density of sampled trees was 0.715?±?0.182 g cm?3. The average BEF was of 2.05?±?0.15 and the estimated mean AGB of 387?±?126 Mg ha?1. The BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s National Forestry Inventory equation.

Conclusion

The BAE and the BEF function developed in this study can be used to estimate the AGB of the mountain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric model should be preferable when DBH information is available.
  相似文献   

11.
Reliable and accurate estimates of tropical forest above ground biomass (AGB) are important to reduce uncertainties in carbon budgeting. In the present study we estimated AGB of central Indian deciduous forests of Madhya Pradesh (M.P.) state, India, using Advanced Land Observing Satellite – Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) L-band data of year 2010 in conjunction with field based AGB estimates using empirical models. Digital numbers of gridded 1?×?1° dual polarization (HH & HV) PALSAR mosaics for the study area were converted to normalized radar cross section (sigma naught - σ0). A total of 415 sampling plots (0.1 ha) data collected over the study area during 2009–10 was used in the present study. Plot-level AGB estimates using volume equations representative to the study area were computed using field inventory data. The plot-level AGB estimates were empirically modeled with the PALSAR backscatter information in HH, HV and their ratios from different forest types of the study area. The HV backscatter information showed better relation with field based AGB estimates with a coefficient of determination (R2) of 0.509 which was used to estimate spatial AGB of the study area. Results suggested a total AGB of 367.4 Mt for forests of M.P. state. Further, validation of the model was carried out using observed vs. predicted AGB estimates, which suggested a root mean square error (RMSE) of ±19.32 t/ha. The model reported robust and defensible relation for observed vs. predicted AGB values of the study area.  相似文献   

12.
The demand for precise mapping and monitoring of forest resources, such as above ground biomass (AGB), has increased rapidly. National accounting and monitoring of AGB requires regularly updated information based on consistent methods. While remote sensing technologies such as airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) have been shown to deliver the necessary 3D spatial data for AGB mapping, the capacity of repeat acquisition, remotely sensed, vegetation structure data for AGB monitoring has received less attention. Here, we use vegetation height models (VHMs) derived from repeat acquisition DAP data (with ALS terrain correction) to map and monitor woody AGB dynamics across Switzerland over 35 years (1983-2017 inclusive), using a linear least-squares regression approach. We demonstrate a consistent relationship between canopy height derived from DAP and field-based NFI measures of woody AGB across four inventory periods. Over the environmentally heterogeneous area of Switzerland, our models have a comparable predictive performance (R2 = 0.54) to previous work predicting AGB based on ALS metrics. Pearson correlation coefficients between measured and predicted changes in woody AGB over time increased with shorter time gaps (< 2 years) between image capture and field-based measurements, ranging between 0.76 and 0.34. A close temporal match between field surveys and remote sensing data acquisition is thus key to reliable mapping and monitoring of AGB dynamics, especially in areas where forest management and natural disturbances trigger relatively fast canopy dynamics. We show that VHMs derived from repeat DAP capture constitute a cost effective and reliable approach to map and monitor changes in woody AGB at a national extent and can provide an important information source for national carbon accounting and monitoring of ecosystem service provisioning.  相似文献   

13.
将GNSS-R/IR技术的应用领域拓展到地表冻融状态的监测中,本文利用冻融土混合介质介电常数模型计算土壤介电常数,采用双站全极化相干反射率模型和随机粗糙面散射模型,分别计算了经冻融土反射的GPS相干反射量的镜像反射率,以及GPS非相干反射分量的漫散射特性。模拟分析了冻融转换时,GPS多路径信息(GNSS-IR)以及包含漫散射信号的延迟多普勒图(GNSS-R)的变化特征。理论研究表明冻融转换过程中,地表介电常数的变化导致GPS多路径信息和延迟多普勒图的明显变化。本文从散射机理上揭示了利用GNSS-R和GNSS-IR遥感进行地表冻融特性监测的理论依据。  相似文献   

14.
Spectral modeling of above ground biomass (AGB) with field data collected in 48 field sites representing moist deciduous forest in Surat district is reported. Models were generated using LISS-III and MODIS data. The plot-wise field data was aggregated to MODIS pixel (250 m) using area weightages of forest/vegetation. The study reports that above ground phytomass varied from 6.13 t/ha to 389.166 t/ha while AGB phytomass estimated using area-weights for sites of 250×250 m, ranged from 5.534 t/ha to 134.082 t/ha. The contribution of bamboo in AGB has been found very high. The analysis indicated that the highest correlation between AGB phytomass and red band (R) of MODIS satellite data of October was (R2=0.7823) and R2=0.6998 with both NDVI of October data as well as NDVImax. High correlation (R2=0.402) with IR band of February month was also found. The phytomass range obtained by using MODIS data varies from 0.147 t/ha to 182.16 t/ha. The mean biomass is 40.50 t/ha. Total biomass is 31.44 Mt. The mean Carbon density is 19.44 tC/ha in forest areas. The study is validation of region-wise spectral modeling approach that will be adopted for mapping vegetation carbon pool of the India under National Carbon Project of ISRO-Geosphere Biosphere Programme.  相似文献   

15.
机载LiDAR数据估算样地和单木尺度森林地上生物量   总被引:2,自引:0,他引:2  
李旺  牛铮  王成  高帅  冯琦  陈瀚阅 《遥感学报》2015,19(4):669-679
利用机载激光雷达点云数据,结合大量实测单木结构信息,分别从样地和单木尺度估算了森林地上生物量AGB。首先,利用局部最大值单木提取算法提取了每个样地内的单木结构参数,并针对样地和单木尺度分别计算了一组激光雷达变量。然后,利用激光雷达变量和地上生物量及其两者的对数形式,从样地和单木尺度分别构建了估算模型。最后,针对两种尺度估算过程中存在的不确定性进行了详细讨论。结果表明:(1)样地和单木尺度模型估算的森林地上生物量与地面实测值都具有明显的相关性,且对数模型估算效果要优于非对数模型;(2)样地尺度模型估算效果(R2=0.84,rRMSE=0.23)明显优于单木尺度模型(R2=0.61,rRMSE=0.46);(3)按树木类型分别进行估算可以提高单木地上生物量的估算精度;(4)不论是样地还是单木尺度地上生物量估算都存在一定的不确定性,与样地尺度相比,单木尺度估算过程的不确定性更大,这种不确定性主要来自单木识别过程。  相似文献   

16.
Forest plantations are an important source of terrestrial carbon sequestration. The forest of Robinia pseudoacacia in the Yellow River Delta (YRD) is the largest artificial ecological protection forest in China. However, more than half of the forest has appeared different degrees of dieback and even death since the 1990s. Timely and accurate estimation of the forest aboveground biomass (AGB) is a basis for studying the carbon cycle of forests. Light Detecting and Ranging (LiDAR) has been proved to be one of the most powerful methods for forest biomass estimation. However, because of an irregular and overlapping shape of the broadleaved forest canopy in a growing season, it is difficult to segment individual trees and estimate the tree biomass from airborne LiDAR data. In this study, a new method was proposed to solve this problem of individual tree detection in the Robinia pseudoacacia forest based on a combination of the Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) with the Backpack-LiDAR. The proposed method mainly consists of following steps: (i) at a plot level, trees in the UAV-LiDAR data were detected by seed points obtained by an individual tree segmentation (ITS) method from the Backpack-LiDAR data; (ii) height and diameter at breast height (DBH) of an individual tree would be extracted from UAV and Backpack LiDAR data, respectively; (iii) the individual tree AGB would be calculated through an allometric equation and the forest AGB at the plot level was accumulated; and (iv) the plot-level forest AGB was taken as a dependent variable, and various metrics extracted from UAV-LiDAR point cloud data as independent variables to estimate forest AGB distribution in the study area by using both multiple linear regression (MLR) and random forest (RF) models. The results demonstrate that: (1) the seed points extracted from Backpack-LiDAR could significantly improve the overall accuracy of individual tree detection (F = 0.99), and thus increase the forest AGB estimation accuracy; (2) compared with MLR model, the RF model led to a higher estimation accuracy (p < 0.05); and (3) LiDAR intensity information selected by both MLR and RF models and laser penetration rate (LP) played an important role in estimating healthy forest AGB.  相似文献   

17.
The aim of study is to map the carbon dioxide (CO2) emission of the aboveground tree biomass (AGB) in case of a fire event. The suitability of low point density, discrete, multiple-return, Airborne Laser Scanning (ALS) data and the influence of several characteristics of these data and the study area on the results obtained have been evaluated. A sample of 45 circular plots representative of Pinus halepensis Miller stands were used to fit and validate the model of AGB. The ALS point clouds were processed to obtain the independent variables and a multivariate linear regression analysis between field data and ALS-derived variables allowed estimation of AGB. Then, the influence of several characteristics on the residuals of the model was analyzed. Finally, conversion factors were applied to obtain the CO2 values. The AGB model presented a R2 value of 0.84 with a relative root-mean-square error of 27.35%. This model included ALS variables related to vegetation height variability and to canopy density. Terrain slope, aspect, canopy cover, scan angle and the number of laser returns did not influence AGB estimations at plot level.  相似文献   

18.
The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an African forest and the usefulness of including hyperspectral information, we modeled biomass using small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Partial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70) improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation. Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured AGB to a larger area.  相似文献   

19.
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.  相似文献   

20.
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号