首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

2.
The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self‐consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center‐of‐mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X‐class flares, almost 50% events show such changes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Motivated by recent high-resolution observations of the solar surface, we investigate the problem of non-linear magnetoconvection in a three-dimensional compressible layer. We present results from a set of numerical simulations which model the situation in which there is a weak imposed magnetic field. This weak-field regime is characterized by vigorous granular convection and spatially intermittent magnetic field structures. When the imposed field is very weak, magnetic flux tends to accumulate at the edges of the convective cells, where it forms compact, almost 'point-like' structures which are reminiscent of those observed in the quiet Sun. If the imposed field is slightly stronger, there is a tendency for magnetic flux to become concentrated into 'ribbon-like' structures which are comparable to those observed in solar plages. The dependence of these simulations upon the strength of the imposed magnetic field is analysed in detail, and the concept of the fractal dimension is used to make a further, more quantitative comparison between these simulations and photospheric observations.  相似文献   

4.
In their “mixing time” theory of magnetic heating of the corona by slow photospheric motion, Heyvaerts and Priest (1984) neglected certain second-order terms in the calculation of the energy and retained the linear part of the perturbed magnetic field which led to infinite displacements. In this paper, we revised these points. Our main results are: (1) the heating efficiency we obtained is greater than what they found. (2) Dissipation-free, linear evolution of the force-free field of coronal arcade is impossible. (3) The possibility of reconnection of field lines of non-linear force-free field is clarified in terms of the field configuration and it is pointed out that reconnection is most likely at a height equal to about one width of the arcade.  相似文献   

5.
Previous statistical analyses of a large number of SOHO/MDI full disk longitudinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.  相似文献   

6.
Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.  相似文献   

7.
We present results from numerical simulations of the interaction of internal gravity waves (IGW) with a magnetic field. In accordance with the dispersion relation governing IGW in the presence of magnetism and rotation, when the IGW frequency is approximately that of the Alfvén frequency, strong reflection of the wave occurs. Such strong reflection markedly changes the angular momentum transport properties of the waves. In these simple models a strong, time-independent shear layer develops, in contrast to the oscillating shear layer that develops in the purely hydrodynamic case.  相似文献   

8.
Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field B e, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field B p that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealized numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and characterized by a pattern of vigorous, time-dependent, 'granular' motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localized concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than B e and the high magnetic pressure in these flux elements leads to their being partially evacuated. Some of these flux elements contains ultraintense magnetic fields that are significantly greater than B p. Such fields are contained by a combination of the thermal pressure of the gas and the dynamic pressure of the convective motion, and they are constantly evolving. These ultraintense fields develop owing to non-linear interactions between magnetic fields and convection; they cannot be explained in terms of 'convective collapse' within a thin flux tube that remains in overall pressure equilibrium with its surroundings.  相似文献   

9.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We study the rotation of the sector structure of the solar magnetic field by using Stanford magnetographic observations from 1975 until 2000 and magnetic synoptic Hα-maps obtained from 1904 until 2000. The two independent series of observations yielded the same rotation periods of the two-sector (26.86 days) and four-sector (13.64 days) structures. We introduce a new index of the solar rotation, SSPM(t). The spectral power density of the sector structure of the magnetic field is shown to exhibit a 22-year cyclicity. The two-and four-sector structures of the magnetic field rotate faster at the maxima of even 11-year sunspot cycles. This phenomenon may be called the Gnevyshev-Ohl rule for the solar rotation. The 11-year sector-structure activity cycles are shown to lead the 11-year sunspot cycles (Wolf numbers) by 5.5 years. A 55-year component with the slowest rotation in the 18th cycle (1945–1955) was distinguished in the sector-structure rotation.  相似文献   

11.
Significant discrepancies are often observed among the values of the mean magnetic field (MMF) of the Sun as a star observed by various instruments using various spectral lines. This is conventionally attributed to the measurement errors and “saturation” of a solar magnetograph in fine-structure photospheric elements with a strong magnetic field. Measurements of the longitudinal MMF performed in 1968–2006 at six observatories are compared in this paper. It is shown that the degree of discrepancy (slopes b of linear regression lines) varies significantly over the phase of the 11-year cycle. This gives rise to a paradox: the magnetograph calibration is affected by the state of the Sun itself. The proposed explanation is based on quantum properties of light, namely, nonlocality and “coupling” of photons whose polarization at the telescope-spectrograph output is determined by spacious parts of the solar disk. In this case, the degree of coupling, or “identity,” of photons depends on the field distribution in the photosphere and the instrument design (as Bohr said, “the instrument inevitably affects the result”). The “puzzling” values of slope b are readily explained by the dependence of the coupling on the solar-cycle phase. The very statistical nature of light makes discrepancies unavoidable and requires the simple averaging of data to obtain the best approximation of the actual MMF. A 39-year time series of the MMF absolute value is presented, which is indicative of significant variations in the magnitude of the solar magnetic field with a cycle period of 10.5(7) yr.  相似文献   

12.
We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In this case, the neutral component of the converging convective flows entrain electrons and ions in different ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate conditions. We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating (as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and their characteristic energies. We discuss the role of the return current when dense beams of accelerated particles are injected into the corona. The results obtained are considered in light of the currently available data on the corpuscular radiation from solar flares.  相似文献   

13.
The observed splittings of solar oscillation frequencies can be utilized to study possible large-scale magnetic fields present in the solar interior. Using the GONG data on frequency splittings an attempt is made to infer the strength of magnetic fields inside the Sun.  相似文献   

14.
15.
A possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14 C content variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.  相似文献   

16.
A multiwavelength photometric analysis was performed in order to study the sub-structure of a sunspot light bridge in the photosphere and the chromosphere. Active region NOAA 8350 was observed on 1998 October 8. The data consist of a 100 min time series of 2D spectral scans of the lines Fe  i 5576 Å, Hα 6563 Å, Fe  i 6302.5 Å, and continuum images at 5571 Å. We recorded line-of-sight magnetograms in 6302.5 Å. The observations were taken at the Dunn Solar Telescope at US National Solar Observatory, Sacramento Peak. We find evidence for plasma ejection from a light bridge followed by Ellerman bombs. Magnetograms of the same region reveal opposite polarity in light bridge with respect to the umbra. These facts support the notion that low-altitude magnetic reconnection can result in the magnetic cancellation as observed in the photosphere.  相似文献   

17.
18.
In view of the recently discovered time variations in rotation velocity within the solar differentially rotating tachocline (Howe et al. 2000), we study conditions for the equilibrium and excitation of motions in nonrigidly rotating magnetized layers of the radiative zones located near the boundaries of the convection zone. The emphasis is on the possible relationship between quasi-periodic tachocline pulsations and the generation of a nonaxisymmetric magnetic field in the convection zone. This field generation is studied under the assumption that it results from a reduction in the expenditure of energy on convective heat transport. The (antisymmetric about the equator) field is shown to increase in strength if there are both a radial gradient in angular velocity and steady-state axisymmetric meridional circulation of matter. The sense of circulation is assumed to change (causing the sign of the generated field to change) after the maximum permissible field strength is reached. This is apparently attributable to the excitation of the corresponding turbulent viscosity of the medium. It is also important that the cyclic field variations under discussion are accompanied by variations in solar-type dipole magnetic field.  相似文献   

19.
Measurements of the fluxtube field strength B and filling α in solar flares, active regions and faculae have been analyzed. To estimate the values of B, Stokes V peak separations of the Fe I 5247 Å and Fe I 5250 Å lines have been used. It was found that the value of B in an In-flare (˜ 1.1 kG) was slightly smaller than that in faculae (˜ 1.3 kG) and a non-flare active region (˜ 1.4kG). On the other hand, in a more power 2b-flare the value of B was in the range from. 1.1 kG (the start of the flare) to 1.55kG. (during the peak). Thus the values of the field strength of flares somewhat differ from those both of faculae and active regions. The magnetic filling factor is approximately equal in flares (0.2-0.40) and active regions (0.3) but several times larger as compared with faculae.  相似文献   

20.
By using the monochromatic images and magnetograms obtained with the satellite Hinode, 35 pairs of bipolar moving magnetic features (MMFs) in sunspot penumbrae are studied in the following three aspects: the morphological characteristics, velocities of motion and responses in low atmospheric layers. Then the following conclusions are drawn. (1) The bipolar MMFs appear in pairs of positive and negative polarities, are located in the midst of the approximately vertical magnetic fields in spot penumbrae, and move toward the outer boundaries of penumbrae. This indirectly justifies that the bipolar MMFs originate in the horizontal magnetic fields of penumbrae. In the time intervals of 2-8 hours and at the same positions, there appear the bipolar MMFs with similar morphologial characteristics and velocities of motion. This povides an evidence which supports the model of magnetic lines in the shape of sea serpent. (2) In the process of motion of bipolar MMFs there may appear brightenings in the photospere and chromosphere, and this implies that the middle and low layers of solar atmosphere are heated by the bipolar MMFs. (3) The sites of occurrence of bipolar MMFs and the distribution of penumbral magnetic field agree with the structural characteristics of uncombed sunspot penumbrae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号