首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 656 毫秒
1.
The objectives of this present research were to assess the heritability of growth traits under low temperature conditions in turbot(Scophthalmus maximus L.), and to analyze the correlation between body weight(BW) and body length(BL). There were 536 individuals from 25 full- and half-sib families involved in this study. During the entire 90-day period, which was initiated at 233 dph(day old) and ended at 323 dph, the individuals' BW and BL were weighed consecutively six times every 18 days. The heritability of BW and BL and the correlation between these two traits were estimated based on an individual animal model with the derivative-free restricted maximum likelihood(DFREML) method. These results showed that the specific growth rates(SGR) of 25 families was from 0.75±0.11 to 1.05±0.14 under water temperature of 10.5–12°C. In addition, the heritability of BW and BL estimated under low-temperature were 0.32±0.04 and 0.47±0.06, respectively. The BW had a medium heritability(0.2–0.4), and the BL had a high heritability(0.45), which suggested that selection for increased weight and length was feasible. Moreover, there was potential for mass selection on growth. The genetic and phenotypic correlations between BW and BL were 0.95±0.01 and 0.91±0.01(P 0.01), respectively. A significant correlation between BW and BL showed that BL could be instead of BW for indirect selection, which could be effectively implemented in the breeding program.  相似文献   

2.
In order to carry out the genetic improvement of turbot upper thermal tolerance, it is necessary to estimate the genetic parameters of UTT(upper thermal tolerance) and growth-related traits. The objective of this study was to estimate genetic parameters for BW(body weight) and UTT in a two-generational turbot(Scophthalmus maximus L.) pedigree derived from four imported turbot stocks(England, France, Denmark and Norway). A total of 42 families including 20 families from G1 generation and 22 families from G2 generation were used to test upper thermal tolerance(40–50 animals per family) in this study and the body weight of individuals were measured. The heritability of BW and UTT and the correlation between these two traits were estimated based on an individual animal model using Bayesian method based on two types of animal models with and without maternal effects.These results showed that the heritabilities for BW and UTT and phenotypic and genetic correlations between the two traits estimated from model without maternal effects were 0.239±0.141, 0.111±0.080, 0.075±0.026 and–0.019±0.011, respectively. The corresponding values from model with maternal effects were 0.203±0.115,0.055±0.026, 0.047±0.034 and –0.024±0.028, respectively. The maternal effects of BW and UTT were 0.050±0.017 and 0.013±0.004, respectively. The maternal effects had a certain influence on the genetic evaluation of the two traits. The findings of this paper provided the necessary background to determine the best selection strategy to be adopted in the genetic improvement program.  相似文献   

3.
An abnormally high temperature produces a stress response in turbot causing large economic losses in the turbot aquaculture industry of China. A genetic improvement of the upper thermal tolerance (UTT) of turbot could allow cultured fi sh to adapt. A genetic evaluation of UTT is required for determining the practicability of including this trait into a breeding program. In this study, data were recorded from a temperature tolerance test conducted on 3 200 individual turbots from 32 full-sib groups. A cross-sectional linear model and a cross-sectional threshold probit model were used to analyze the test-period survival and a cross-sectional threshold logit model was used to analyze the test-day survival. In addition, phenotypic and genetic correlations between body weight and survival data were estimated. The estimated heritability values obtained from the cross-sectional linear model (CSL), the cross-sectional threshold (probit) model (THRp), and the cross-sectional threshold (logit) model (THRl) were 0.247 9±0.108 3, 0.288 3±0.161 2, and 0.106 9±0.045 2, respectively. The correlation coeffi cients among the full-sib family estimated breeding values (EBVs) obtained from the three models were greater than 0.998 6 and all models produced an almost identical family ranking. The accuracies of selection obtained with the CSL, THRp, and THRl model were 0.773 8, 0.775 4, and 0.784 4, respectively, the greatest from the THRl model. The genetic correlations between body weight and survival data EBVs from the CSL, THRp, and THRl models were 0.020 1,-6.201 1×10^-4 , and -3.115 4×10^-4 , respectively, and the phenotypic correlations between the two traits were -0.837 1 and -0.667 1, respectively. The findings of this study provide background information to determine the best strategy of selection for the genetic improvement of UTT in turbot.  相似文献   

4.
Twenty-six half-sib groups(53 full-sib families) of turbot, Scophthalmus maximus Linnaeus, were obtained by artificial insemination. We measured growth in the offspring(40–50 individuals/family) and subjected them to a thermal tolerance challenge over a period of 34 d. There was no significant difference in daily mortality(range: 0.580%–1.391%) between Days 1–13 during the thermal tolerance challenge. However, daily cumulative mortality increased rapidly between Days 14 and 29, especially on Days 15 and 16(20.232% and 34.377%, respectively). Mortality was highest on Day 16(14.145%). We estimated the genetic parameters using the average information restricted maximum likelihood method. We used a likelihood ratio test to evaluate the significance of effects in models with and without identity as an effect, and compared the final log-likelihoods(maximum log L). Lastly, we estimated phenotypic and genetic correlation between the upper thermal tolerance limit(UTT) and body weight(BW). In this study, the positive phenotypic correlation was low between UTT and BW(0.093±0.029). The genetic correlation between UTT and BW was negative(-0.044±0.239). The heritability for upper thermal tolerance was low(0.087±0.032), which is of approximately moderate heritability. The heritability for body weight was high(0.303±0.074). Our results suggest there is significant potential for improvement in the culture of turbot by selective breeding.  相似文献   

5.
Genetic parameters and response to selection were estimated for harvest body weight in turbot. The data consisted of 10 952 individuals of 508 full-sib families from three generations(G0, G1, and G2). The heritability estimates for G0, G1, and G2 were 0.11±0.08, 0.18±0.09, and 0.17±0.07, respectively. Over three generations, the heritability estimate was 0.19±0.04. Maternal and common environmental effects were 0.10±0.04, 0.14±0.04, and0.13±0.03 within each generation and 0.12±0.01 across generations. The selection differential in growth was 18.24 g in G0 and 21.19 g in G1 corresponding to an average of 19.72 g per generation. The genetic gains were also calculated, they were 22.06 g in G1 and 11.93 g in G2, corresponding to 6.36% and 3.52% body weight. The total genetic gain after two generations was 10.10% body weight, which indicated that the selective breeding program for the body weight trait in turbot was successful.  相似文献   

6.
Bayesian and restricted maximum likelihood(REML) approaches were used to estimate the genetic parameters in a cultured turbot Scophthalmus maximus stock. The data set consisted of harvest body weight from 2 462progenies(17 months old) from 28 families that were produced through artificial insemination using 39 parent fish. An animal model was applied to partition each weight value into a fixed effect, an additive genetic effect, and a residual effect. The average body weight of each family, which was measured at 110 days post-hatching, was considered as a covariate. For Bayesian analysis, heritability and breeding values were estimated using both the posterior mean and mode from the joint posterior conditional distribution. The results revealed that for additive genetic variance, the posterior mean estimate( δ_a~2=9 320) was highest but with the smallest residual variance,REML estimates( δ_a~2=8 088) came second and the posterior mode estimate( δ_a~2=7 849) was lowest. The corresponding three heritability estimates followed the same trend as additive genetic variance and they were all high. The Pearson correlations between each pair of the three estimates of breeding values were all high,particularly that between the posterior mean and REML estimates(0.996 9). These results reveal that the differences between Bayesian and REML methods in terms of estimation of heritability and breeding values were small. This study provides another feasible method of genetic parameter estimation in selective breeding programs of turbot.  相似文献   

7.
Heritability and genetic and phenotypic correlations were estimated for juvenile growth traits of Pacific abalone Haliotis discus hannai Ino.The estimates were calculated from shell length and shell width measurements on progeny resulting from 12 half-sib families and 36 full-sib families obtained using artificial fertilization of mating three females to each male.The measurements were taken at 10,20 and 30 d after fertilization.It was found that heritability estimates based on sire component ranged from 0.23 to 0.36 for shell length and 0.21 to 0.32 for shell width.Heritability estimates from dam component were larger than those from sire component at three ages,indicating presence of maternal effects,non-additive genetic effects and common environmental effects.Phenotypic correlations were significant at three ages(P < 0.05),with values of 0.92,0.93 and 0.92,respectively.Genetic correlations from the paternal half-sib correlation analysis were highly positive at three ages,with values of 0.50,0.78 and 0.81,respectively.The results suggest that selective breeding is an effective approach to improving growth traits of Pacific abalone stocks.  相似文献   

8.
The complete diallel cross design was employed to estimate the genetic parameters of the growth of Japanese flounder (Paralichthys olivaceus). A total of 60 full-sib families were cultivated and two growth-related traits, body weight (BW) and body length (BL), were examined at average 2, 3 and 8 months of age respectively, with 1 800 individuals measured in each age group (30 per family). Based on the additive-dominance-maternal-effect genetic analysis model, the restricted maximum likelihood approach was used to estimate various (co)variance components. The results showed that narrow-sense heritability estimates of BW and BL were respectively:0.29±0.01 and 0.22±0.02 at 2 months of age, 0.32±0.02 and 0.30±0.04 at 3 months of age, 0.48±0.04 and 0.40±0.05 at 8 months of age; broad-sense heritability estimates were respectively:0.44±0.02 and 0.54±0.04 at 2 months of age, 0.35±0.01 and 0.36±0.03 at 3 months of age, 0.49±0.03 and 0.45±0.04. All heritabilities were statistically significant (P <0.05). Additive genetic correlations between BW and BL at 2, 3 and 8 months of age were consistently positive and highly significant (P <0.01):0.93±0.02, 0.95±0.03 and 0.92±0.03 respectively. Maternal effect was significant (P <0.05) only at 2 months of age, and was not detected at 3 and 8 months of age. According to the heritability estimates, the mass selection strategy should be efficient for the breeding of Japanese flounder.  相似文献   

9.
The inability of Fenneropenaeus chinensis to tolerate low temperatures is of major economic concern in temperate climates,as it reduces their growing season and leads to over-winter mortality.In this study,the heritability of body weight under low grow-out temperature and cold tolerance in F.chinensis were first investigated and estimated using 88 ful-sib families,which might provide crucial information in Chinese fleshy prawn breeding programs.The heritability for body weight under suitable and low temperature of F.chinensis were both moderate(0.158 0±0.307 5 and 0.132 0±0.026 9 respectively);the large coefficient of variation(approximately 21%) and moderate estimate of heritability for body weight indicated substantial potential for selective breeding.The heritability estimate for cold tolerance was low(0.019 2±0.023 5),and showed no significant differences from zero(P0.05).A weak genetic correlation between cold tolerance and body weight was also estimated in the present study,also showing no significant differences from zero(P0.05).Thus,more research needs to be conducted on the more accurate heritability estimate of cold tolerance and genetic correlations between traits in F.chinensis to further improve the achievement of breeding goals.  相似文献   

10.
In order to elucidate the genetic mechanism of growth traits in turbot during ontogeny, developmental genetic analysis of the body weights, total lengths, standard lengths and body heights of turbots was conducted by mixed genetic models with additive-dominance effects, based on complete diallel crosses with four different strains of Scophthalmus maximus from Denmark, Norway, Britain, and France. Unconditional genetic analysis revealed that the unconditional additive effects for the four traits were more significant than unconditional dominance effects, meanwhile, the alternative expressions were also observed between the additive and dominant effects for body weights, total lengths and standard lengths. Conditional analysis showed that the developmental periods with active gene expression for body weights, total lengths, standard lengths and body heights were 15–18, 15 and 21–24, 15 and 24, and 21 and 27 months of age, respectively. The proportions of unconditional/conditional variances indicated that the narrow-sense heritabilities of body weights, total lengths and standard lengths were all increased systematically. The accumulative effects of genes controlling the four quantitative traits were mainly additive effects, suggesting that the selection is more efficient for the genetic improvement of turbots. The conditional genetic procedure is a useful tool to understand the expression of genes controlling developmental quantitative traits at a specific developmental period(t-1→t) during ontogeny. It is also important to determine the appropriate developmental period(t-1→t) for trait measurement in developmental quantitative genetic analysis in fish.  相似文献   

11.
The aim of this study was to evaluate the genetic parameters of the growth performance of Takifugu rubripes. Heritabilities and genetic correlations were estimated for body weight (BW), body length (BL), total length (TL), chest measurement (CM) and trunk length (TKL) of T. rubripes from measurements of progeny at 6 months and 12 months. The results showed that the heritability was 0.37 for BW6, 0.19 for BL6, 0.35 for TL6, 0.29 for CM6, 0.26 for TKL6, 0.36 for BW12, 0.26 for BL12, 0.25 for TL12, 0.31 for CM12 and 0.15 for TKL12. The range of genetic correlations estimated at 6 months was 0.025–0.725 and ?0.002–0.706 at 12 months. The results indicated that genetic improvement for faster growth rate or increased body weight in cultured T. rubripes was effective. Based on selection theory, the selection strategy for traits with medium heritability is flexible. Considering that these growth traits do not reach the high level of heritability, family selection should be expected. Given positive genetic correlations among BW, BL, TL, CM, and TKL at 6 months, the five traits could be improved simultaneously through selective breeding. As there was high genetic correlation only between BW12, BL12 and TL12, and negative correlations between TKL12 and BL12 as well as between CM12 and TL12, and only BW, BL and TL at 12 months could be improved simultaneously.  相似文献   

12.
为了开展大菱鲆耐高温选育工作,对其进行耐高温性状及其相关生长性状的遗传评估是非常必要的。以来源于英国、法国、丹麦和挪威4个国家的不同群体构建大菱鲆选育家系,利用F1的20个和F2的22个耐高温选育家系进行耐高温实验,统计耐高温评估指标(UTT)和相应的实验鱼体重(每个家系选取40-50尾实验鱼)。基于Gibbs抽样的贝叶斯方法,采用包含母性效应和不包含母性效应的两种动物模型,对大菱鲆耐高温(UTT)和生长性状的遗传力以及这两个性状间的遗传相关和表型相关进行分析。结果表明,基于不包含母性效应的动物模型估计的体重和耐高温性状的遗传力以及这两个性状之间的表型相关和遗传相关分别为0.239±0.141,0.111±0.080,0.075±0.026和-0.019±0.011。基于包含母性效应的动物模型估计的这4个值分别为0.203±0.115,0.055±0.026,0.047±0.034和-0.024±0.028,体重和耐高温性状的母性效应分别为0.050±0.017和0.013±0.004。母性效应对这两个性状的遗传评估有一定的影响。本文的研究结论为制订合理的大菱鲆耐高温育种规划提供了理论依据。  相似文献   

13.
采用人工控温的方式, 对构建的31个F1红鳍东方鲀(Takifugu rubripes)全同胞家系开展低温胁迫实验, 获得耐低温性状低温累计存活时间(CDH), 基于混合线性模型分别开展耐低温性状和生长性状遗传参数评估,对每一性状是否需要考虑共同环境效应所构建的两种模型进行似然比检验。结果显示, 经似然比检验, 最终选用模型A和模型BF进行耐低温和生长性状遗传评估; 耐低温性状CDH遗传力为(0.27±0.08),属于中等遗传力; 体重BW遗传力为(0.36±0.13), 属于中等遗传力, 体长BL遗传力为(0.14±0.06), 属于低等遗传力, 经检验, 遗传力估计值均达到极显著水平(P<0.01)。CDH和体重、体长的遗传相关分别为(-0.40±0.22)和(-0.44±0.24), 表型相关分别为(-0.09±0.06)和(-0.16± 0.05), 均为负相关; 体重和体长之间的遗传相关为(0.92±0.05), 表型相关为(0.80±0.02), 呈正相关且结果极显著(P<0.01)。研究结果表明, 红鳍东方鲀的耐低温性状和生长性状都具有较好的改良潜力, 考虑到两性状间存在负遗传相关, 在开展耐低温选育时, 对首先不同性状进行品系选育, 然后利用品系间杂交培育出耐高温、生长快的新品种。该项研究首次完成了红鳍东方鲀耐低温性状的遗传参数评估, 为制订红鳍东方鲀耐低温选育育种规划提供了理论依据。  相似文献   

14.
以虹鳟(Oncorhynchus mykiss)优良品系选育群体作为试验群体,采用单性状动物模型估计头长、体长、体高、体厚、尾柄长、尾柄高、背吻距、背鳍基长等8个主要体尺性状的遗传力。结果显示,上述8个性状的遗传力在0.131—0.313之间,多为中等或偏低遗传力,其中背鳍基长遗传力最低,为0.131±0.039,体高遗传力最高,为0.313±0.086。采用皮尔逊相关法估计上述性状之间的表型相关,结果显示,上述性状间表型相关变化范围为0.016—0.815。采用两性状动物模型估计上述性状间的遗传相关,结果表明,上述性状间遗传相关变化范围为0.065—0.866。在本研究中,比较分析表型和遗传相关结果发现,虽然体厚与尾柄长的表型相关最低,仅为0.016,相关性不显著(P0.05),但是遗传相关为0.247,似然比检验(likelihood ratio test,LRT)统计分析达到显著水平(P0.05)。体厚与背鳍基长的表型相关为0.647,t检验达到显著水平(P0.05);但遗传相关仅为0.305,LRT统计分析未达到显著水平(P0.05)。上述结果说明,在该群体中各体尺性状的表型相关和遗传相关水平不完全相同,在设计育种方案时应综合考虑各个性状间的表型相关及遗传相关。  相似文献   

15.
本研究估计了大菱鲆收获体重性状的遗传参数和选育遗传进展。数据共包括3个世代(G0,G1,G2)的508个全同胞家系10952尾个体。G0,G1,G2的体重估计遗传力分别为0.11±0.08,0.18±0.09,0.17±0.07;世代间估计遗传力为0.19±0.04。每一世代母本和共同环境效应分别为0.10±0.04,0.14±0.04,0.13±0.03;世代间为0.12±0.01。G0和G1世代选择差分别为,18.24g和21.19g。对应的G1和G2世代的遗传进展为22.06g,11.93g;百分比表示分别为6.36%,3.52%。连续两代选择之后总遗传进展为10.10%。以上结果说明针对大菱鲆体重性状的选育项目是成功的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号