首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents.The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina interrnedia, and two brown algae Petaloniafascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G.interrnedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia,exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. interrnedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO2 in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.  相似文献   

2.
Dark respiration (non-photorespiratory mitochondrial respiration),which occurs both in the light and in darkness,is vital for growth and survival of algae and plays a critical role in modulating the carbon balance of them.In the present study,we have investigated dark respiration in the light (R L) and in darkness (R D) in three marine macroalgal species,Hizikia fusiformis (phaeophyta),Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta),cultured at 20℃ using aeration with two CO 2 conditions:current ambient (CO 2 concentration about 380 μl/L) and elevated CO 2 (approximately 720 μl/L) air.R L was estimated by using the Kok method,whereas R D was determined as the rate of O 2 influx at zero light.The results showed that both R L and R D were unchanged for the elevated CO 2-grown algae relative to ambient CO 2 concentration for all the algal species tested.However,R L was significantly lower than R D across all the algal species and growth CO 2 treatments,demonstrating that daytime respiration was partly depressed by the light.The percentage of inhibition of respiration by light was similar between ambient and elevated CO 2 grown algae.The ratio of respiration to photosynthesis,which tended to decrease when estimated using R L instead of R D,was not altered for the elevated relative to ambient CO 2 concentration.The results suggest that R L,rather than R D,is a more accurate estimate of nonphotorespiratory carbon loss in marine macroalgae during the daytime.It would not be anticipated that elevated atmospheric CO 2 would exert a substantial influence on respiratory flux either in the light or in darkness in these particular marine macroalgal species.  相似文献   

3.
Ecological experiments were conducted to examine the effects of seawater containing elevated par- tial pressure of carbon dioxide (p CO2 800 × 10 -6 , 2 000 × 10 -6 , 5 000 × 10 -6 and 10 000 × 10 -6 ) on the survival and reproduction of female Acartia pacifica, Acartia spinicauda, Calanus sinicus and Centropages tenuiremis, which are the dominant copepods in the southern coastal waters of China. The results show that the effects of elevated p CO2 on the survival rates of copepods were species-specific. C. sinicus, which was a macro-copepod, had a higher survival rate (62.01%-71.96%) than the other three species (5.00%-26.67%) during the eight day exposure. The egg production rates of C. sinicus, A. spinicauda and C. tenuiremis were significantly inhibited by the increased p CO2 and the exposure time duration. There were significantly negative impacts on the egg hatching success of A. spinicauda and C. tenuiremis in the p CO2 2 000 × 10 -6 and 10 000 × 10 -6 groups, and, in addition, the exposure time had noticeably impacts on these rates too. This study indicates that the reproductive performances of copepods were sensitive to elevated p CO2 , and that the response of different copepod species to acidified seawater was different. Furthermore, the synergistic effects of seawater acidification and climate change or other pollutant stresses on organisms should be given more attention.  相似文献   

4.
In recent years, extreme heat events have occurred worldwide and the ocean temperature has been rising, causing stress on the photosynthesis and growth of seagrass. Metabolomics enables detection of metabolic changes under environmental stress. In this study, the photosynthetic physiology and metabolic changes of the eelgrass Zostera marina L. in response to 48 h exposure to 32°C were investigated. The results showed that high temperature induced signi?cant inhibition of photosynthetic effciency(Δ F/F′ m)(23.9%lower than the control), enhanced respiration(58.3% higher), and decreased carbohydrate decomposition products and tricarboxylic acid(TCA) cycle intermediate products, indicating that the energy supply of the eelgrass may be insuffcient at high temperature. In addition, high temperature decreased stearic acid and linoleic acid in eelgrass, suggesting the composition of the membrane system of eelgrass may change at high temperature and implying that high temperature may cause the membrane system to be unstable.  相似文献   

5.
Gracilariopsis lemaneiformis is an economically-valued species and widely cultured in China at present.After being acclimated to diff erent growth temperatures(15,20,25,and 30°C)for 7 days,the relative growth rate(RGR),nitrate reductase activity,soluble protein content and chlorophyll a fl uorescence of G.lemaneiformis were examined.Results show that RGR was markedly aff ected by temperature especially at 20°C at which G.lemaneiformis exhibited the highest eff ective quantum yield of PSII[Y(II)]and lightsaturated electron transport rate(ETR max),but the lowest non-photochemical quenching.Irrespective of growth temperature,the nitrate reductase activity increased with the incubation temperature from 15 to 30°C.In addition,the greatest nitrate reductase activity was found in the thalli grown at 20°C.The value of temperature coeffi cient Q10 of alga cultured in 15°C was the greatest among those of other temperatures tested.Results indicate that the optimum temperature for nitrate reductase synthesis was relatively lower than that for nitrate reductase activity,and the relationship among growth,photosynthesis,and nitrate reductase activity showed that the optimum temperature for activity of nitrate reductase in vivo assay should be the same to the optimal growth temperature.  相似文献   

6.
Ocean acidification(OA)affects marine biodiversity and alters the structure and function of marine populations,communities,and ecosystems.Recently,effects of OA on the behavioral responses of marine animals have been given with much attention.While many of previous studies focuses on marine fish.Evidence suggests that marine invertebrate behaviors were also be affected.In this review,we discussed the effects of CO2-driven OA on the most common behaviors studied in marine invertebrates,including settlement and habitat selection,feeding,anti-predatory,and swimming behaviors,and explored the related mechanisms behind behaviors.This review summarizes how OA affects marine invertebrate behavior,and provides new insights and highlights novel areas for future research.  相似文献   

7.
Laminaria japonica, Undaria pinnatifida, Ulva lactuca, Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass, rapid growth and promising nutrient uptake rates. In this investigation, the responses of the optimal chlorophyll fluorescence yield of the five algal species in tumble culture were assessed at a temperature range of 10 - 30℃. The results revealed that Ulva lactuca was the most resistant species to high temperature, withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield . While the arctic alga Palmaria palmata was the most vulnerable one, showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h. The cold-water species Laminaria japonica, however, demonstrated strong ability to cope with higher temperature (24 -26℃ ) for shorter time (within 24 h) without significant decline in the optimal chlorophyll fluorescence yield . Grateloupia turuturu showed a general decrease in the optimal chlorophyll fluorescence yield with the rising temperature from 23 to 30℃ , similar to the temperate kelp Undaria pinnatifida. Changes of chlorophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light. Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°N was proposed according to these basic measurements.  相似文献   

8.
This study conducted four cruises during 2014–2017 to investigate relationships between macrobenthic communities and sediment contaminations in sea area around the Zhoushan Archipelago. Fourteen sites were categorized into three groups: high total heavy metal contamination content(HHMC), high total petroleum hydrocarbon content(HTPH), and low content ratio of heavy metal contamination content to total petroleum hydrocarbon content(HMC/TPH) areas. Four main taxa of macrofauna(polychaetes, bivalves, gastropods, and crustaceans) were determined to respond to environmental factors differently. While tolerant polychaetes being the minimal impact by environmental factors, bivalves were threated by heavy metal pollutions in sediment.Additionally, body size distribution frequency demonstrated that macrofauna in the low HMC/TPH areas were less disturbed by contamination than those in the HHMC and HTPH areas. The result represented the presentation of sensitive species while tolerant species are usually considered as small size organisms. Overall,this study confirmed the hypothesis that the contamination levels of small-scale patches is indicated by the condition of macrobenthic communities.  相似文献   

9.
马蹄礁底栖海藻的研究   总被引:1,自引:0,他引:1  
In this paper, the composition, distribution, seasonal variation and biomass of benthic algae of Qingdao Mati Reef were studied during the period from May of 1981 to April of 1982.The results of the investigation are as follows: 1. 83 species of benthic algae of Qingdao Mati Reef were found,and they are indentified as: 13 Chlorophyta, 16 Phaeophyta and 54 Rhodo-phyta.2. According to the flora of 83 species of benthic algae in Qingdao Mati Reef, it seems that they belong to warm temperate.3. The annual biomass and biomass variation of benthic algae in March were hightest of the west part of Qingdao Mati Reef.  相似文献   

10.
Effects of four nitrogen substrates on growth of several red tide species   总被引:1,自引:0,他引:1  
--Eight common red tide species including the Dinoflagellates Ale randrium tamarense,Prorocentrum minimum, Prorocentrum mican, Diatoms Skeletonema costatum , Cerataulina pelagica, Leptocylindrus minimus, a Raphidophyte Heterosigma akashiwo and a Chrysophyte Ivohrysis galbana were chosen to study the effect of four nitrogen substrates ( NO3 - N, NH4 - N, Urea - N,Mixed - N) on the growth of these algae. After two transfers, the results showed that at N concentration of 550μrnol, NO3 N was the best nitrogen source among these four nitrogen substrates; Urea - N and Mixed- N were also good for the growth of most algae, but not as good as NO3 - N for some species; NH4 - N inhibited the growth of all these species except H. akashiwo. At concentrations of 280 and 50 μmnol experiments on the growth of I. galbana, P. minimum and L. minimus in NH4 - N and NO3 - N substrates were also performed. The results showed that the growth rates of I. galbana were not significantly different from each other in NO3 - N and NH4 - N substrates both concentrations of 280 and 50 μmol. In concentration of 280μmol NH4 - N substrate, the growth rates of P.minimum and L. minimus were slower than in same concentration of NO3 - N; At concentration of 50μrmol , the growth rate of P. minimum in NH4 - N was not significantly different from that in NO3 - N, while the growth rate of L. minimus was only about 30% of that in NO3 - N substrate.The results indicated that each alga had its own preference in N-substrate and concentration, therefore,different nitrogen substrates may play a role in red tide formation.  相似文献   

11.
工业革命以来,人类活动释放的大量CO2进入大气层,不仅产生严重的温室效应,也使得全球海洋出现酸化的现象。造礁珊瑚被认为是受海水酸化影响最大的类群。本研究以鹿角杯形珊瑚(Pocillopora damicornis)为研究对象,通过气体交换法模拟未来的酸化环境(2100年)研究鹿角杯形珊瑚的钙化率和光合能力(Fv/Fm)对酸化的响应。实验设置两个pH组(分别为7.8和8.1),自然光下进行4周的实验,水温控制在(27.5±1)℃。由于珊瑚等生物的代谢过程(主要是呼吸作用),实验系统的pH昼夜变化显著,酸化处理组和对照组的pH分别介于7.69~7.91和7.99~8.29。鹿角杯形珊瑚的生长率介于1.15%~2.09%/周,酸化对鹿角杯形珊瑚的钙化率和光合效率没有显著的影响,鹿角杯形珊瑚对酸化的敏感度低。对比历史研究数据,本研究的结果进一步表明酸化对造礁珊瑚的影响存在种的特异性。推测鹿角杯形珊瑚对酸化的抗性可能与该珊瑚在有光的条件下能够利用HCO-3以及能够上调钙化位点的pH有关。这种特异性的pH缓冲能力使得珊瑚能维持钙化位点钙质基质高的文石饱和度(Ωarag),因此能以小的额外能耗提高造礁珊瑚的钙化率。  相似文献   

12.
Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO2 concentration to 26 μmol kg−1 (by bubbling with air containing 0.9 mbar CO2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO2.  相似文献   

13.
Research on coralline algal responses to ocean acidification and other environmental stressors has increased in recent years as coralline algae is thought to stand a higher chance of being affected by acidification stress than other macroalgae. To provide context and enhance the existing eco‐physiological framework for climate change studies, it is important to understand the effects of non‐extreme stressors experienced regularly by inter‐tidal coralline algae. In this study, we tested the potentially interacting effects of diurnal and tidal treatments on calcification in the geniculate coralline algae Corallina frondescens and Corallina vancouveriensis using 13C‐labeled bicarbonate. Both species deposited more calcium carbonate during the day than at night, and also when submerged (high tide) compared with when emerged (low tide) in their apical and mature segments (intergenicula). These results indicate that inter‐tidal coralline algae do in fact pay a cost for living inter‐tidally at the edge of an adaptive zone.  相似文献   

14.
人工栽培的坛紫菜(Pyropia haitanensis)具有重要的经济意义和生态功能,非常有必要研究海洋酸化对坛紫菜的影响.本研究通过充入高CO2浓度(1000×10-6)的空气模拟海洋酸化,探讨了不同接种密度条件下海洋酸化对坛紫菜叶状体的生理生态学效应.结果表明,长约1 cm的叶状体接种密度从1株/dm3提高到3株...  相似文献   

15.
The ocean captures a large part of the anthropogenic carbon dioxide emitted to the atmosphere. As a result of the increase in CO2 partial pressure the ocean pH is lowered as compared to pre-industrial times and a further decline is expected. Ocean acidification has been proposed to pose a major threat for marine organisms, particularly shell-forming and calcifying organisms. Here we show, on the basis of meta-analysis of available experimental assessments, differences in organism responses to elevated pCO2 and propose that marine biota may be more resistant to ocean acidification than expected. Calcification is most sensitive to ocean acidification while it is questionable if marine functional diversity is impacted significantly along the ranges of acidification predicted for the 21st century. Active biological processes and small-scale temporal and spatial variability in ocean pH may render marine biota far more resistant to ocean acidification than hitherto believed.  相似文献   

16.
There are still major gaps in our understanding of the impact of ocean acidification (OA) on some groups of organisms within different geographic regions. We investigated the effect of OA on two common and ecologically important temperate sponge species in New Zealand (Tethya bergquistae and Crella incrustans). Sponges were kept at pH 8 (control) and 7.6 for 4 weeks. Responses of the two species varied, with T. bergquistae kept at pH 7.6 showing some mortality in response to reduced pH and evidence of tissues necrosis. In contrast, only one C. incrustans died in the pH 7.6 treatment and showed little evidence of any tissue degradation. Only T. bergquistae showed evidence for physiological effects of reduced pH as respiration rates were generally higher in the pH 7.6 treatment. Our results provide preliminary evidence to support a general tolerance of temperate sponges to reduced pH, but that some species-specific responses may exist.  相似文献   

17.
Increasing sea‐surface temperatures and ocean acidification (OA) are impacting physiologic processes in a variety of marine organisms. Many sea anemones, corals and jellies in the phylum Cnidaria form endosymbiotic relationships with Symbiodinium spp. (phylum Dinoflagellata) supply the hosts with fixed carbon from photosynthesis. Much work has focused on the generally negative effects of rising temperature and OA on calcification in Symbiodinium‐coral symbioses, but has not directly measured symbiont photosynthesis in hospite or fixed carbon translocation from symbiont to host. Symbiodinium species or types vary in their environmental tolerance and photosynthetic capacity; therefore, primary production in symbiotic associations can vary with symbiont type. However, symbiont type has not been identified in a large portion of Symbiodinium?cnidarian studies. Future climate conditions and OA may favor non‐calcifying, soft‐bodied cnidarians, including zoanthids. Here we show that two zoanthid species, Palythoa sp. and Zoanthus sp., harboring different symbiont types (C1 and A4), had very different responses to increased temperature and increased partial pressure of CO2 (pCO2), or dissolved CO2, and low pH. Thermal stress did not affect carbon fixation or fixed carbon translocation in the Zoanthus sp./A4 association, and high pCO2/low pH increased carbon fixation. In contrast, both thermal stress and high pCO2/low pH greatly inhibited carbon fixation in the Palythoa sp./C1 association. However, the combined treatment of high temperature and high pCO2 increased carbon fixation relative to the treatment of high temperature alone. Our observations support the growing body of evidence that demonstrates that the response of symbiotic cnidarians to thermal stress and OA must be considered on a host‐specific and symbiont‐specific basis. In addition, we show that the effects of increased temperature and pCO2 on photosynthesis may change when these two stressors are combined. Understanding how carbon fixation and translocation varies among different host?symbiont combinations is critical to predicting which Symbiodinium associations may persist in warm, acidified oceans.  相似文献   

18.
Ocean acidification damages calcareous organisms, such as calcifying algae, foraminifera, corals, and shells. In this study, we made a device equipped with a Clark-type oxygen electrode and a pH-stat to examine how the most abundant calcifying phytoplankton, the coccolithophorid Emiliania huxleyi, responded to acidification and alkalization of the seawater medium. When E. huxleyi was incubated at pH 8.2, close to oceanic pH, the medium was alkalized during photosynthesis, and the alkalization rate [determined as μmol HCl added (mg Chl)−1 h−1] was identical to the activity of photosynthesis [determined as μmol O2 evolved (mg Chl)−1 h−1]. When pH was maintained at 7.2 by the pH-stat, alkalization activity was stimulated and exceeded photosynthetic activity, resulting in an increase in the ratio of alkalization to photosynthesis (Alk/PS). On the other hand, no alkalization and photosynthesis were observed at pH 9.2. In contrast, acidification of seawater was observed in the dark because of the release of respiratory CO2 from cells at pH 8.2–9.2, but not at pH 7.2. When orthophosphate was rapidly depleted within a day in the batch culture, intracellular calcification gradually increased, and both photosynthesis and alkalization decreased gradually. During the period the Alk/PS ratio also decreased gradually. These results indicate that E. huxleyi possesses an ability to compensate for the acidification of seawater when photosynthesis is more actively driven than respiration. These results suggest that the E. huxleyi cells may not be severely damaged by oceanic acidification during photosynthesis because of their homeostatic function to avoid negative effects on cellular activity. Finally, we concluded that E. huxleyi cells possess a buffering ability to reduce acidification effects when photosynthesis is actively driven.  相似文献   

19.
The Arctic Ocean and its associated ecosystems face numerous challenges over the coming century. Increasing atmospheric CO2 is causing increasing warming and ice melting as well as a concomitant change in ocean chemistry (“ocean acidification”). As temperature increases it is expected that many temperate species will expand their geographic distribution northwards to follow this thermal shift; however with the addition of ocean acidification this transition may not be so straightforward. Here we investigate the potential impacts of ocean acidification and climate change on populations of an intertidal species, in this case the barnacle Semibalanus balanoides, at the northern edge of its range. Growth and development of metamorphosing post-larvae were negatively impacted at lower pH (pH 7.7) compared to the control (pH 8.1) but were not affected by elevated temperature (+4 °C). The mineral composition of the shells did not alter under any of the treatments. The combination of reduced growth and maintained mineral content suggests that there may have been a change in the energetic balance of the exposed animals. In undersaturated conditions more mineral is expected to dissolve from the shell and hence more energy would be required to maintain the mineral integrity. Any energy that would normally be invested into growth could be reallocated and hence organisms growing in lowered pH grow slower and end up smaller than individuals grown in higher pH conditions. The idea of reallocation of resources under different conditions of pH requires further investigation. However, there could be long-term implications on the fitness of these barnacles, which in turn may prevent them from successfully colonising new areas.  相似文献   

20.
珊瑚藻是珊瑚礁生态系统中重要的功能性群体。2010年通过水肺潜水分析了三亚珊瑚礁区的珊瑚藻种类组成和丰度, 以及群落空间特征与环境因子的关系。共鉴定出3科10属25种珊瑚藻, 其中珊瑚藻科占优势地位。三亚珊瑚礁区的珊瑚藻优势种分别为叉节藻Amphiroa ephedraea、拟中叶藻Mesophyllum simulans、串胞新角石藻Neogoniolithon fosliei、中叶藻M. mesomorphum、圆锥呼叶藻Pneophyllum conicum、孔石藻Porolithon onkodes和布氏水石藻Hydrolithon boergesenii。基于多元统计的分析结果, 将调查采样站位分为近岸型和离岸型2个主要集群, 其中近岸型的珊瑚藻种类以浊度、沉积速率(0~63μm)和悬浮物耐受种类为主, 离岸型则以光依赖-沉积物敏感种类为主。以珊瑚藻种类组成和丰度为基础的群落相似性分析结果表明, 其空间变异处于显著性水平。生物与非生物变量的相关分析结果表明, 最佳两变量组合(浊度和盐度)显著影响三亚珊瑚礁区2种类型调查站位中的珊瑚藻集合。在同一个研究站位, 因受干扰程度不同, 深水处的珊瑚藻的覆盖率比浅水处高。分析结果表明, 在三亚独特的珊瑚礁区中, 自然或人为的物理干扰因素都对调节珊瑚藻群落结构非常重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号