首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
1引言 2010年8月13—15口.黑龙江省出现一次明显的天气过程。统计13日05时到15日05时黑龙江省的县站过程降水量,其中齐弃哈尔、鹤岗降水量分别达134mm、125mm,萝北、  相似文献   

2.
使用江西自动站数据、MICAPS天气图资料、雷达拼图CR产品和单部雷达基数据等资料,采用统计分析、形态对比、特征提取等方法,对2017—2019年宜丰4次暴雨和大暴雨过程中的短时强降水天气的演变与回波特征进行分析,结果表明:(1)宜丰暴雨或大暴雨过程都出现了≥30 mm·h-1的短时强降水。(2)200 hPa赣北处辐散分流区中,500 hPa 588 dagpm线稳定维持在江西南部,赣北处于850 hPa西南急流的左侧及前端,形成上干下暖湿的不稳定层结;地面辐合线是短时强降水的主要触发系统。(3)在短时强降水期间,雷暴回波群中超级单体回波强度为60~65 dBZ,短带回波强度为50~55 dBZ,复合体回波强度为55~60 dBZ,絮状回波带回波强度为40~45 d BZ。(4)在单部雷达回波产品上,雷暴回波群、回波短带、复合单体回波和絮带状回波,组合反射率CR为40~65 d BZ,回波顶高ET为8~15 km,垂直液态水含量VIL为10~60 kg/m2,50 dBZ强回波顶高为5~12 km。  相似文献   

3.
济南市区短时强降水特征分析   总被引:16,自引:7,他引:16  
用2006—2008年5—9月的济南市区区域自动气象观测站资料和高空、地面资料,分析了济南市区出现短时强降水(R≥15mm/h)的年际、月际、时际以及强度特征,并分析了产生短时强降水的不同天气系统类型,为今后济南市区短时强降水的短时临近预报和预警提供参考。  相似文献   

4.
本文利用常规地面及高空观测资料、加密自动站资料及多普勒雷达资料等,从环境条件及雷达特征等方面对2019年鸡西市一次极端短时强降水天气进行分析,结果表明:强降水发生在宽广且深厚的西风槽稳定维持背景下,降水区中层有冷空气入侵,低层位于槽前暖湿气流中,一致的西南风输送水汽至降水区。850 hPa槽线是本次对流天气的触发系统,上冷下暖及午后地面温度迅速升高造成热力不稳定,另外,低层绝对水汽含量较高是本次短时暴雨发生的重要条件。从雷达产品上看,麻山区的降水是由多单体风暴形成的,其中包含有超级单体风暴,单体依次经过降水区,强对流过程持续3 h,一定的"列车效应"使其出现了短时暴雨天气。  相似文献   

5.
山东省短时强降水天气的特征分析   总被引:1,自引:0,他引:1  
通过分析山东省2007—2010年常规观测资料、山东省区域和国家级自动气象观测站降水观测资料,研究短时强降水天气的时间和地理分布特征,分析短时强降水出现的时间、落区和强度,并对1小时降水量≥100mm的短时特强降水的天气系统进行了分析,结果表明:2007—2010年山东省短时强降水天气一般出现在5—10月,7—8月较多;1小时降水量≥100mm的短时特强降水都发生在7—8月;出现短时强降水天气的时段以午后至傍晚居多,夜间次之,上午最少;当500hPa位于西风槽前和副高边缘,700hPa和850hPa位于西风槽前或存在切变线,地面有冷锋影响时,有可能发生1小时降水量≥100mm的短时特强降水天气。  相似文献   

6.
利用常规资料和ERA5再分析资料对2020年7月8日黑龙江省出现的一次局地强降水进行了中尺度特征分析。结果表明:该过程是由于暖区内低层暖平流强迫发生的,具有局地性强,降水强度大的特点;深厚的湿层和弱的垂直风切变为此次强降水提供有利的环境条件;超低空西南急流和中层干入侵造成的对流性不稳定促进的局地强降水的发生;在地面辐合线的触发下,高垂直液体含水量值的维持在雷达特征上形成了后向传播的“列车效应”。  相似文献   

7.
利用2008—2017年汛期(5—9月)杭州地区自动气象站观测资料和ECMWF ERA-Interim(0. 5°×0. 5°)全球再分析数据,对杭州地区短时强降水日(小时雨强≥20 mm)的分布特征和环流背景进行分析,结果表明:1)杭州地区短时强降水量和发生频次呈现北部大于南部,高值区位于主城区附近。2)造成杭州地区出现短时强降水的天气系统,依据其出现频率,大体可分为西风带低槽型、梅雨锋型、热带气旋型、副高边缘西风急流型和局地强对流型等5类。3)不同天气系统影响时,杭州地区短时强降水时空分布存在差异,时间分布上西风带低槽和副高边缘西风急流影响时,短时强降水主要发生在早晨到上午和傍晚到前半夜,热带气旋和局地强对流影响时降水主要集中在午后到夜里,梅雨锋型降水呈多时段频发的特点;空间分布上西风带低槽型有3个强降雨中心分别位于主城区、淳安南部和临安淳安交界山区;梅雨锋型分布较均匀,大值区位于临安中西部至富阳南部一带;热带气旋型分布呈北多南少,临安天目山区、主城区南部和富阳永安山区是3个中心;副高边缘西风急流型中心位于主城区和余杭区;局地强对流型分布不均匀,大值位于临安天目山区、建德东南部和主城区北部。4)针对不同类型的短时强降水分布特征,提出气象服务适宜采用的服务方式。  相似文献   

8.
黑龙江省地处我国的高纬地区,四季分明,灾害性天气一年四季均有发生。除了夏季强对流和强降水天气外。还经常发生暴雪、寒潮、沙尘暴、霜冻等灾害性天气,通过对黑龙江省的灾害天气的准确把握.可以为全省农业、交通等部门做好服务。  相似文献   

9.
湿位涡诊断分析在东南亚强降水中的应用   总被引:14,自引:6,他引:14       下载免费PDF全文
文章应用湿位涡理论 ,分析了发生在东南亚夏季的两个强降水个例 ,讨论了湿位涡与东南亚强降水形成的关系。东南亚夏季具有利于强降水发生的湿位涡场分布特征 ;强降水的发展与湿位涡的变化有很好的对应关系 :当对流层低层MPV1<0、同时MPV2 ≥ 0时 ,易产生强降水 ;当对流层高层MPV1正值区与低层MPV1负值区相互作用 ,即高层下滑的干冷空气与低层上升的高温高湿空气交汇 ,容易贮存和释放湿对流不稳定能量 ,有利于强降水产生。湿位涡理论在东南亚强降水诊断中有很好的应用前景。  相似文献   

10.
对流性强降水的数值模拟研究   总被引:1,自引:2,他引:1  
利用中科院大气所改进的三维强降水对流云数值模式,在证明该模式可较好地模拟对流性强降水的基础上,对1998年7月21日晨发生在武汉的梅雨锋强降水个例进行模拟,深入分析云体结构、降水量等特征,研究暴雨形成的云物理机制。作为对比,另外选取了陕西旬邑的一个强降水个例进行模拟。模拟结果表明,武汉个例云发展较稳定,雨水的形成主要是暖雨过程,冷雨过程对雨水的增加有促进作用,地面无固态降水,雨滴直径、大雨滴浓度相对较大。虽然云中最大上升气流速度、各种降水粒子最大含水量以及瞬时最大雨强等都不如旬邑的强对流云个例强,但累积降水量却比旬邑的大。通过人为改变低层大气湿度的模拟结果发现,这次强降水的长时间维持与低层充沛的水汽供应密切相关。  相似文献   

11.
一次西南涡引发暴雨的地闪特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用高频次多普勒雷达回波资料、闪电定位仪及区域自动站资料,对2011年6月9日湖北暴雨过程的闪电特征进行分析。结果表明:MCS不同生命阶段地闪所处位置不同,正、负闪同时跃增到峰值是MCS成熟阶段的标志之一,地闪密集区和MCS中移速较快的强回波位置基本吻合,MCS强回波区域出现正、负闪和45-55 dBz回波后部区域对应较好,强降水发生在MCS成熟后趋于消亡阶段。  相似文献   

12.
利用地面观测资料以及NCEP/NCAR再分析资料,分析了2011年1月20-24日黑龙江省西南部一次大范围持续性霾过程的变化特点及环流背景;诊断分析了该次过程中动力、水汽及不稳定条件。结果表明:该次过程表现为明显的日变化特征。霾过程持续期间,黑龙江省处于纬向型环流的控制之下,冷空气势力弱;黑龙江西南部整体处于地面高压内的均压场中,有利于霾维持。近地面气象要素中相对湿度和风速与霾的严重程度相关很好,能够解释霾的日变化特点。近地层弱的辐合上升、中高层的辐散下沉运动,有利于逆温增强,并使水汽和污染物扩散到一定高度,使霾维持,抑制其消散。  相似文献   

13.
利用常规观测资料、自动站观测资料和榆林多普勒雷达(CB)观测资料,分析2009年7月7—8日发生在陕北北部榆林地区的暴雨天气过程,结果表明:这次暴雨天气过程可分为两个时段,第一个时段是强对流产生的局地暴雨,第二个时段是大范围对流天气产生的区域性暴雨。对流体中低层辐合、高层辐散情况下出现中层辐合区特征可作为强降雨出现时段和地点的一个指示,在短时临近预警时可作为强降雨预警重点区域考虑。低层偏东急流是区域性暴雨天气的触发者,区域性暴雨天气的发生,对应着低层偏东急流、中低空海拔2.0~4.0 km偏南急流、中高空海拔4.0~8.0 km风速≥12 m/s的西南气流,各层气流随高度上升顺时针旋转。区域性暴雨天气与中低空急流的出现密切相关,中低空急流建立、增强,区域性暴雨也随之出现、增强;中低空急流遭到破坏,区域性暴雨天气结束。  相似文献   

14.
2007年8月大连地区一次暴雨过程特征分析   总被引:5,自引:3,他引:5       下载免费PDF全文
运用常规天气图资料,并根据地面自动站和多普勒雷达等资料,综合分析了2007年8月10-12日大连地区暴雨天气过程。结果表明:地面中尺度气旋的生成和发展是产生大暴雨的动力条件,低空急流的建立为暴雨产生提供了大量水汽,稳定的高压坝是暴雨落区在大连出现的必要前提。  相似文献   

15.
利用常规气象观测数据、吉林省加密自动站观测数据、NCEP的1°×1°再分析资料和卫星云顶亮温数据,对2018年8月13—15日吉林省一次暴雨过程成因进行分析。结果表明:“三带”(西风带、副热带和热带环流)是暴雨产生的大尺度环流背景。大气整层水汽通量显示副热带高压外围的西南气流与远距离台风外围东南气流共同为暴雨输送充沛的水汽。降水有两个主要阶段,大气层结特征均为高层有正值位涡扰动并沿假相当位温锋区下滑,大气层结不稳定,水汽充沛,不稳定能量较大。降水第二阶段水汽输送、动热力条件、不稳定能量均小于第一阶段。云图表现特征为中尺度对流辐合体和中尺度对流云团,中尺度对流辐合体云团发展旺盛时,低层呈现气旋式涡度、中尺度辐合,高层呈反气旋式涡度、中尺度辐散。925 hPa低空切变线和地面辐合线是暴雨发生的中尺度触发条件。  相似文献   

16.
应用常规观测资料、NCEP再分析资料和卫星云图产品,对2011年7月31日黑龙江省西部暴雨天气成因进行诊断分析。讨论了产生暴雨的天气系统特征,大气不稳定条件及产生暴雨的水汽条件和动力触发机制。结果表明:暴雨是由低涡、低涡槽前暖湿气流与冷空气的共同影响产生的。低层强盛的偏南气流建立起水汽通道,将水汽源源不断地向暴雨区输送。低层增温增湿使得大气层结不稳定。低层较强的西北气流与强盛的东南暖湿气流汇合,产生强切变,辐合上升运动增强,为暴雨的产生提供了动力条件,有利于不稳定能量释放。高层辐散与低层辐合相配合,有利于上升运动发展和维持。地面中尺度低压和中尺度辐合线为中尺度云团的发展和维持提供了条件;中尺度云团在暴雨区旋转停留近21 h,这是暴雨发生的主要原因。  相似文献   

17.
吴琼  钱鹏  郭煜  朱海涛  孙翠梅 《气象科学》2014,34(5):549-555
利用NCEP再分析资料,FY2E卫星的TBB资料,常规和加密气象站资料,对2012年7月2—4日,江苏省一次持续性梅雨锋暴雨过程进行了诊断和中尺度特征分析。结果表明:此次过程是东北冷涡槽东移与副热带高压西北侧暖湿气流交汇形成的。暴雨落区在低空西南急流的左侧和中高空急流的一、三象限,低层干线触发了不稳定能量的释放。经分析有7个中尺度云团造成了本次持续性暴雨,-64℃的冷云盖是较强降水的指标性温度,不断东移的中尺度云团类似于"列车效应",带来持续降水,降水开始时间落后于中尺度云团生成时间约2~4 h。地面中尺度辐合线是触发此次强降水的重要中尺度系统,辐合线附近易触发对流,且对流降水沿着辐合线方向移动。低层正、高层负的垂直螺旋度,高温高湿的大气以及较高的位势不稳定为暴雨和强对流天气提供有利条件。在垂直上升运动区北侧有明显下沉运动补偿气流,使上升气流得以长时间维持。暴雨区位于925 hPa超低空急流核移动方向的左侧。  相似文献   

18.
城市内涝的发生与气象条件紧密相关,强降水是致灾的关键因素。通过分析把握剑河县城降雨变化趋势,结合城区的易涝点及历史积水资料,得到内涝灾害风险的分布特征及演变规律,进一步开展气象条件致灾关键环节分析,有助于剑河县内涝灾害气象决策服务更加精细化,为加强城市灾害的应急处置和应对防范能力体系建设提供气象支撑。通过对剑河县国家气象观测站2007~2021年降水数据进行分析,剑河县城降水主要集中在4~9月,占全年降水的74.5%,该时段也是剑河县城短时强降水、大雨、暴雨的集中高发期,4~9月大雨以上量级降水出现日数呈增多趋势,近15a来1h最大降水量呈逐年波动增加趋势,且主要发生在4~9月。结合DEM数字高程数据得到的易积水路段点及历史积水内涝资料分析,当短时强降水发生时,县城易积水路段会出现不同程度的积水,当小时雨强达到20mm且未来降水持续时,有积水达到10~20cm的风险,对行人过往造成影响,需加强监测并提示相关部门注意易积水路段可能出现积水风险;小时雨强超过30mm时,有积水超过20cm的风险,对车辆及低洼路段建筑影响较大,需及时联系相关部门建议在易积水路段采取相应排水措施,避免出现积水内涝情况影响居民工作生活,同时开展公众服务建议居民注意出行安全;小时雨强超过50mm时,将出现30cm以上积水,对过往车辆及低洼段建筑影响很大,行驶车辆应当就近到安全区域暂避,避免将车辆停放在低洼易涝等危险区域,如遇严重水浸等危险情况应当立即弃车逃生。相关应急处置部门和抢险单位应当严密监视灾情,做好内涝可能引发的其他灾害应急抢险救灾工作。  相似文献   

19.
利用常规资料、雷达回波等资料,用天气学原理及中尺度分析方法,对2009年6月9日发生在荔波的一次强降水过程进行分析,结果发现:此次强降水过程对应的物理量场上有明显的高湿区、垂直上升运动区、中尺度辐合带和辐合系统存在。说明中小尺度系统的存在是强降水产生、维持发展的必要条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号