共查询到20条相似文献,搜索用时 15 毫秒
1.
Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters 总被引:1,自引:0,他引:1
Pollution of coastal regions of the Great Barrier Reef World Heritage Area (GBRWHA) is dominated by river discharge associated with agricultural development of the adjacent catchments. Runoff of sediment, nutrients and pesticides has sharply increased since European settlement. Since 1991 plumes from river discharge entering the GBRWHA have been mapped by aerial mapping of plume edges and concentrations of contaminants in plumes measured. Plume dispersion is governed primarily by wind speed and direction. Most plumes spread in a band up to 50 km from the coast. Particulate material discharged in the plumes is trapped within 10 km of the coast. Dissolved nutrients disperse much further and elevated nutrient concentrations are measurable at distances of hundreds of kilometres from river mouths. This differential transport of particulate versus dissolved nutrients is important for the potential effects of these materials and management of their generation on the Great Barrier Reef catchment. 相似文献
2.
Fabricius KE Cooper TF Humphrey C Uthicke S De'ath G Davidson J LeGrand H Thompson A Schaffelke B 《Marine pollution bulletin》2012,65(4-9):320-332
Responses of bioindicator candidates for water quality were quantified in two studies on inshore coral reefs of the Great Barrier Reef (GBR). In Study 1, 33 of the 38 investigated candidate indicators (including coral physiology, benthos composition, coral recruitment, macrobioeroder densities and FORAM index) showed significant relationships with a composite index of 13 water quality variables. These relationships were confirmed in Study 2 along four other water quality gradients (turbidity and chlorophyll). Changes in water quality led to multi-faceted shifts from phototrophic to heterotrophic benthic communities, and from diverse coral dominated communities to low-diversity communities dominated by macroalgae. Turbidity was the best predictor of biota; hence turbidity measurements remain essential to directly monitor water quality on the GBR, potentially complemented by our final calibrated 12 bioindicators. In combination, this bioindicator system may be used to assess changes in water quality, especially where direct water quality data are unavailable. 相似文献
3.
Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from approximately 1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ((15)N) and indirect ((14)C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone. 相似文献
4.
5.
Kennedy K Schroeder T Shaw M Haynes D Lewis S Bentley C Paxman C Carter S Brando VE Bartkow M Hearn L Mueller JF 《Marine pollution bulletin》2012,65(4-9):292-305
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides. 相似文献
6.
Adaptive management is the pathway to effective conservation, use and management of Australia's coastal catchments and waterways. While the concepts of adaptive management are not new, applications involving both assessment and management responses are indeed limited at the national and regional scales. This paper outlines the components of a systematic framework for linking scientific knowledge, existing tools, planning approaches and participatory processes to achieve healthy regional partnerships between community, industry, government agencies and science providers to overcome institutional barriers and uncoordinated monitoring. The framework developed by the Coastal CRC (www.coastal.crc.org.au/amf/amf/_index.htm) is hierarchical in the way it displays information to allow associated frameworks to be integrated, and represents a construct in which processes, information, decision tools and outcomes are brought together in a structured and transparent way for adaptive catchment and coastal management. This paper proposes how an adaptive management approach could be used to benefit the implementation of the Reef Water Quality Protection Plan (RWQPP). 相似文献
7.
Clearing of native vegetation and replacement with cropping and grazing systems has increased nutrient exports to the Great Barrier Reef (GBR) to a level many times the natural rate. We present a technique for modelling nutrient transport, based on material budgets of river systems, and use it to identify the patterns and sources of nutrients exported. The outputs of the model can then be used to help prioritise catchment areas and land uses for management and assess various management options. Hillslope erosion is the largest source of particulate nutrients because of its dominance as a sediment source and the higher nutrient concentrations on surface soils. Dissolved nutrient fractions contribute 30% of total nitrogen and 15% of total phosphorus inputs. Spatial patterns show the elevated dissolved inorganic nitrogen export in the wetter catchments, and the dominance of particulate N and P from soil erosion in coastal areas. This study has identified catchments with high levels of contribution to exports and targeting these should be a priority. 相似文献
8.
Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia 总被引:1,自引:0,他引:1
Scott A. Wooldridge 《Marine pollution bulletin》2009,58(5):745-751
The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching ‘resistance’) of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this ‘local’ management imperative is equivalent to ∼2.0-2.5 °C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents. 相似文献
9.
Kroon FJ 《Marine pollution bulletin》2012,65(4-9):261-266
Degradation of coastal ecosystems in the Great Barrier Reef (GBR), Australia, has been linked with a decline in water quality from land-based runoff. This paper examines the reduction in current end-of-catchment loads required for total suspended solids (TSS) and dissolved inorganic nitrogen (DIN) to achieve GBR water quality guidelines. Based on first-order estimates of sustainable pollutant loads, current TSS and DIN loads would need to be reduced by approximately 7000ktons/y (41%) and 6000tons/y (38%), respectively. Next, these estimated reductions for TSS and DIN are compared with Reef Plan targets for anthropogenic sediment (-20% by 2020) and nitrogen (-50% by 2013) loads. If successful, these targets will accomplish approximately 40% of TSS and 92% of DIN load reductions required to achieve sustainable loads to the GBR lagoon. These first-order estimates elucidate the need to establish ecologically relevant targets for river pollutant loads to the GBR for management and policy. 相似文献
10.
Numerical hydrodynamic models of the northeastern Queensland shelf, forced by regional winds and modelled boundary currents in the northern Coral Sea, are used to provide improved estimates of general flow trajectories and water residence times within the Great Barrier Reef (GBR) shelf system. Model performance was checked against a limited set of current metre records obtained at Lark Reef (16°S) and the Ribbon Reefs (15.5°S). Estimates of water parcel trajectories are derived from a series of numerical tracer experiments, with daily releases of neutrally buoyant, un-reactive particles at 320 sites along the coast between Cape York (10.7°S) and Hervey Bay (25°S). Flow trajectories and residence times for tracer particles introduced to the GBR lagoon in the southern—ca. 22°S, central—19°S, and northern reef—14°S are emphasised. For purposes of the analysis, the year was divided into two seasons based on mean alongshore current direction. Most coastal sourced tracers entering the central GBR lagoon between 16° and 20°S during the northward-current season (January–August) primarily encounter the outer-shelf reef matrix after exiting the lagoon at its northern “head” (nominally 16°S), after 50–150 days. Up to 70% of tracer particles entering in the southward-current season (August–December) eventually crossed the lagoon to the outer-shelf reef matrix, with median crossing times between 20 and 330 days. During favourable wind conditions, tracers introduced at the coast may move rapidly across the lagoon into the reef matrix. The tracer experiments indicate that most coastal-sourced tracers entering the GBR lagoon remain near the coast for extended periods of time, moving north and south in a coastal band. Residence times for conservative tracer particles (and implied residence times for water-borne materials) within the GBR shelf system ranged from ca. 1 month to 1 year—time frames that are very long relative to development times of planktonic larvae and cycling times for nutrient materials in the water column, implying they are transformed long before reaching the outer reef matrix. 相似文献
11.
Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses 总被引:1,自引:0,他引:1
Brodie JE Kroon FJ Schaffelke B Wolanski EC Lewis SE Devlin MJ Bohnet IC Bainbridge ZT Waterhouse J Davis AM 《Marine pollution bulletin》2012,65(4-9):81-100
The Great Barrier Reef (GBR) is a World Heritage Area and contains extensive areas of coral reef, seagrass meadows and fisheries resources. From adjacent catchments, numerous rivers discharge pollutants from agricultural, urban, mining and industrial activity. Pollutant sources have been identified and include suspended sediment from erosion in cattle grazing areas; nitrate from fertiliser application on crop lands; and herbicides from various land uses. The fate and effects of these pollutants in the receiving marine environment are relatively well understood. The Australian and Queensland Governments responded to the concerns of pollution of the GBR from catchment runoff with a plan to address this issue in 2003 (Reef Plan; updated 2009), incentive-based voluntary management initiatives in 2007 (Reef Rescue) and a State regulatory approach in 2009, the Reef Protection Package. This paper reviews new research relevant to the catchment to GBR continuum and evaluates the appropriateness of current management responses. 相似文献
12.
Much of the sediment and nutrient load to the Great Barrier Reef (GBR) lagoon happens during over bank floods, when discharge can be significantly underestimated by standard river gauges. This paper assesses the potential need for a flood load correction for 28 coastal rivers that discharge into the GBR lagoon. For each river, daily discharge was divided into flows above and below a 'flood' threshold to calculate the mean annual percentage flow above this threshold. Most GBR rivers potentially need a flood load correction as over 15% of their mean annual flow occurs above the minor flood level; only seven rivers need little/no correction as their flood flows were less than 5% of the mean annual flow. Improved assessment of the true load of materials to the GBR lagoon would be an important contribution to the monitoring and reporting of progress towards Reef Plan and associated marine load targets. 相似文献
13.
Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research directions 总被引:6,自引:0,他引:6
Seagrasses in the Great Barrier Reef region, particularly in coastal habitats, act as a buffer between catchment inputs and reef communities and are important habitat for fisheries and a food source for dugong and green turtle. Within the Great Barrier Reef region there are four different seagrass habitat types now recognised. The spatial and temporal dynamics of the different types of seagrass habitat is poorly understood. In general seagrass growth is limited by light, disturbance and nutrient supply, and changes to any or all of these limiting factors may cause seagrass decline. The capacity of seagrasses to recover requires either recruitment via seeds or through vegetative growth. The ability of seagrass meadows to recover from large scale loss of seagrass cover observed during major events such as cyclones or due to anthropogenic disturbances such as dredging will usually require regeneration from seed bank. Limited research into the role of pollutants on seagrass survival suggests there may be ongoing impacts due to herbicides, pesticides and other chemical contaminants. Further research and monitoring of seagrass meadow dynamics and the influence of changing water quality on these is needed to enhance our ability to manage seagrasses on the Great Barrier Reef. 相似文献
14.
Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef 总被引:11,自引:0,他引:11
Macroalgae, hard corals, octocorals, and fish were surveyed on 10 to 13 inshore coral reefs of the Great Barrier Reef, along a water quality gradient in two regions with contrasting agricultural land use. A water quality index was calculated for each reef based on available data of particulate and dissolved nutrients, chlorophyll and suspended solids. Strong gradients in ecological attributes occurred along the water quality gradient. Macroalgae of the divisions Rhodophyta and Chlorophyta increased with increasing nutrients, while Phaeophyta remained similar. Octocoral richness and abundances of many hard coral and octocoral taxa decreased, and none of the hundreds of species increased. At reefs in higher nutrient environments, hard coral and octocoral assemblages were composed of subsets of the many species found in lower nutrient environments, whereas fish and macroalgal assemblages consisted of contrasting suites of species. The study identifies species groups that are likely to increase or decrease in abundance with changing water quality. 相似文献
15.
Schaffelke B Carleton J Skuza M Zagorskis I Furnas MJ 《Marine pollution bulletin》2012,65(4-9):249-260
Coastal and inshore areas of the Great Barrier Reef lagoon receive substantial amounts of material from adjacent developed catchments, which can affect the ecological integrity of coral reefs and other inshore ecosystems. A 5-year water quality monitoring dataset provides a 'base range' of water quality conditions for the inshore GBR lagoon and illustrates the considerable temporal and spatial variability in this system. Typical at many sites were high turbidity levels and elevated chlorophyll a and phosphorus concentrations, especially close to river mouths. Water quality variability was mainly driven by seasonal processes such as river floods and sporadic wind-driven resuspension as well as by regional differences such as land use. Extreme events, such as floods, caused large and sustained increases in water quality variables. Given the highly variable climate in the GBR region, long-term monitoring of marine water quality will be essential to detect future changes due to improved catchment management. 相似文献
16.
A telemetrically controlled system was developed to add nutrients automatically to experimental patch reefs in a remote marine environment. The experiment, called ENCORE, was done in the lagoon of One Tree Island, a remote research station at the southern end of the Great Barrier Reef. Nutrient dispensing units (NDUs), moored adjacent to patch reefs in the lagoon, were telemetrically linked to a base station on the island. The base station, about 3 km away from the furthest NDU, consisted of a dedicated computer, controller and radio transmitter, which relayed coded signals to a radio receiver mounted on each NDU. This activated a solenoid valve to discharge a measured quantity of concentrated nutrient solution from a measuring chamber using compressed air from a SCUBA tank. The solution was discharged through 4-8 PVC outlets into the basins of the patch reefs to allow thorough mixing. The base station interrogated each NDU to find out if the operation had been successful and stored the information on disk to provide a daily log of operations. Nutrient samples taken within the patch reefs demonstrated that calculated initial mean concentrations of 2 micrograms-at PO4-P l-1 and 10 micrograms-at NH4-N l-1 were achieved. The system we have developed can be used in many situations where regular perturbations need to be introduced to aquatic ecosystems. It uses state-of-the-art technology, yet all components are commercially readily available and relatively inexpensive. Detailed specifications and drawings are available from the Great Barrier Reef Marine Park Authority. 相似文献
17.
To reduce sediment exports discharging to the Great Barrier Reef (GBR), it is essential to identify the sources of exported sediment. We used modelling of spatial sediment budgets (the SedNet model) to identify sources and deposition of sediment as it is transported through river networks. Catchments with high levels of land clearing, cattle grazing and cropping show the largest increases in sediment export compared with natural conditions. Hillslope erosion supplies 63% of sediment to the rivers. Gully erosion and riverbank erosion are lower sources of sediment at the GBR catchment scale, but they are important in some catchments. Overall, 70% of sediment exported from rivers comes from just 20% of the total catchment area, showing that much of the problem can be addressed in a relatively small area. This is a much more manageable problem than trying to reduce erosion across the entire GBR catchment. Areas of high contribution are all relatively close to the coast because of the high erosion and high sediment delivery potential. 相似文献
18.
Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities 总被引:1,自引:0,他引:1
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. 相似文献
19.
Nutrient and suspended sediment concentrations were measured in the dry season and during the rising and falling stages of flood events in the Annan and Daintree rivers to estimate catchment exports. These flood events were also sampled along the salinity gradient in the estuary and nearshore shelf to quantify the modification of terrestrial sediment and nutrient loads as they pass through estuaries into the Great Barrier Reef lagoon. In the Daintree River TSS concentrations were found to increase between the catchment and the estuary plume. The source of TSS may have been scour of the estuarine channel or from land use in the catchment of the lower estuary. In the dry season nitrogen enters the Annan and Daintree estuaries predominantly in the form of PON and DON in roughly equal proportions. Nitrogen exports to the GBR are mostly in the form of DON. In the wet season the majority of nitrogen enters the estuaries as DON and leaves as PON. Nitrogen removal in the estuaries and plumes appears to be biologically mediated once suspended sediment concentrations decrease to a point where phytoplankton growth is not light limited. In the dry season phosphorus enters and leaves the estuaries primarily in organic form. PIP is the dominant form of phosphorus in river water, but leaves the estuary more evenly distributed between all forms. These estuarine processes result in less nitrogen and phosphorus being delivered to the GBR lagoon than is exported from the catchment. The differences between these estuaries highlights the need for further work to explore modifications in estuaries that drain into the Great Barrier Reef lagoon. 相似文献
20.
Joo M Raymond MA McNeil VH Huggins R Turner RD Choy S 《Marine pollution bulletin》2012,65(4-9):150-166
The Great Barrier Reef (GBR) catchment area has been monitored simultaneously for sediment and nutrient exports from 10 priority catchments discharging into the GBR lagoon between 2006 and 2009. This allows GBR catchment-wide exports to be estimated and spatially compared within a discrete time-frame. Elevated levels of sediment and nutrient exports were recorded in all monitored catchments as compared to pre-European estimates, but vary around previous estimates of mean annual loads. During the period of monitoring, the Burdekin and Fitzroy catchments contributed the highest sediment and nutrient exports, however when loads were normalised for area, these catchments produced the lowest unit yields. In contrast, the highest yields were produced in the wetter and proportionately more intensively cultivated Johnstone, O'Connell, and Pioneer catchments particularly for dissolved nitrogens. This assessment offers the necessary scientific foundation for future monitoring, assessment, and management of sediment and nutrient loads entering the GBR. 相似文献