首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于BP神经网络和植被冠层辐射传输模型PROSAIL对LAI进行反演,针对BP神经网络中网络结构设计的关键问题,从网络隐含层层数、隐含层节点数和学习速率等3个方面进行分析与讨论,确定了最佳的BP网络结构,取得了较好的反演结果。  相似文献   

2.
以实地测量数据为先验知识,利用AMTIS数据对顺义地区的一块小麦地进行了叶面积指数(LAI)反演实验研究,并用实地LAI数据进行了验证。通过利用实测数据作为模型参数,以及对干湿土壤分类和匹配表的调整,使反演结果和反演速度得到了提高。  相似文献   

3.
锡林浩特草原区域MODIS LAI产品真实性检验与误差分析   总被引:2,自引:0,他引:2  
本文研究了LAI产品真实性检验的指标和方法,建立了LAI产品真实性检验的流程,将遥感产品真实性检验误差分解为模型误差、数据定量化差异和尺度效应3个方面。以内蒙古锡林浩特草原为研究区,结合实测数据和Landsat TM数据建立NDVI-LAI模型,得到LAI验证参考"真值",据此"真值"按照本文的流程对MODIS LAI产品进行验证,分析了研究区MODIS LAI产品真实性检验的误差来源。研究表明,该研究区的MODIS LAI(MOD15A2)产品相对高估约25%。各个误差因素中,LAI遥感模型差异对于结果影响最大,MODIS LAI模型高估了该区域草地LAI(高估约44.2%);数据定量差异的影响也比较大,MODIS地表反射率数据与Landsat TM地表反射率数据的差异造成了约16.2%的低估;尺度效应的影响较小,造成约3.1%的低估,其中NDVI-LAI模型的尺度效应带来2.4%的低估,NDVI数据的尺度效应造成约0.7%的低估。  相似文献   

4.
当前对MODIS LAI产品的真实性检验工作中,更多的是关注遥感产品在数值与趋势上与地表真值的一致性程度,很少工作能够全面分析遥感LAI产品偏差来源以及不同来源的偏差对全局偏差的贡献率。本文在对MODIS LAI产品进行真实性检验基础之上,进一步分析了MODIS LAI产品偏差来源。将遥感产品真实性检验偏差来源分解为反演模型,反射率数据和冠层聚集效应3个方面,并定量分析各个偏差源对真实性检验结果的影响。以河北省怀来玉米为研究对象,结合实测LAI数据和Landsat 8 OLI(Operational Land Imager)数据建立NDVI LAI半经验模型,得到LAI参考数据,据此对MODIS LAI产品进行真实性检验及偏差分析。研究表明,该区域MODIS LAI产品存在明显的低估现象,参考数据和MODIS LAI数据均值分别为3.53 m2/m2和2.33 m2/m2,MODIS产品低估为34.14%。在各个偏差因素中,反射率数据的差异对结果影响最大,即MODIS地表反射率数据与Landsat 8 OLI地表反射率数据的差异造成的偏差占总偏差的57.50%;聚集效应的影响次之,占总偏差的28.33%;模型差异对结果的影响最小,占总偏差的14.17%。本研究对遥感产品真实性检验及其不确定性分析具有一定的借鉴意义。  相似文献   

5.
陈平  王锦地  梁顺林 《遥感学报》2012,16(3):505-519
运用DBM(Data Based Mechanistic)方法,使用MODIS数据,建立了遥感观测反射率数据与叶面积指数(LAI)在时间序列上的统计关系模型(LAI_DBM模型),并结合部分Bigfoot站点实测LAI数据进行了模型检验。结果显示,LAI_DBM模型能够较好表达时间序列反射率与LAI的动态变化关系。LAI_DBM模型使用遥感观测数据实时估算得到的LAI,在数据质量和时间连续性上比MODISLAI有改进。  相似文献   

6.
马尾松LAI与植被指数的相关性研究   总被引:1,自引:0,他引:1  
以福建省永安市区为研究区,计算IRS-P6(LISS-Ⅲ)多光谱数据的DVI、EVI2、MSAVI、NDVI、RDVI、RVI及TNDVI等7种植被指数,并与使用LAI-2000测量的马尾松叶面积指数(LAI)建立相关关系,分析植被指数对马尾松LAI的影响。从决定系数(R2)和标准误差两个方面对基于不同植被指数的LAI反演模型进行定量分析,反演模型包括线性模型、二次曲线模型、幂函数曲线模型和指数曲线模型4种。结果表明,马尾松LAI与植被指数呈指数曲线相关或幂函数曲线相关。反演马尾松LAI,最佳的统计模型是指数曲线模型和幂函数曲线模型,较佳植被指数为TNDVI、NDVI和RVI,其指数曲线模型和幂函数曲线模型拟合的R2均高于0.76,且验证结果R2均高于0.84,但RVI指数反演的模型标准误差相对较大。总体而言,TNDVI和NDVI的指数曲线和幂函数曲线模型对马尾松LAI具有较好的预测性。  相似文献   

7.
刘艳  王锦地  周红敏  薛华柱 《遥感学报》2014,18(6):1189-1198
遥感叶面积指数产品精度和不确定性需要通过地面测量的数据来验证。因为两者的空间尺度差异,验证前需要通过尺度转换方法将这两种数据的尺度统一。将泰勒级数展开模型进行改进后,可以用于解决叶面积指数遥感产品验证中地面测量数据与遥感产品尺度不匹配的问题,同时可以针对每个数据定量给出误差。将误差在阈值范围内的实测数据作为地面参考值对遥感产品进行验证。本文利用这种方法将黑河综合遥感联合实验数据集中的地面测量叶面积指数尺度上升到遥感像元尺度,并与MODIS,GLASS LAI遥感产品进行了比较。  相似文献   

8.
基于MODIS的LAI时间序列谱的地物分类方法研究   总被引:6,自引:0,他引:6  
利用MODIS数据所反演的每8d一景,全年共46景的时间序列叶面积指数(LAI)图像,分析江西省不同类型地物的LAI时间序列谱,并对地物进行分类。首先,利用最小噪声比变换技术(MNF)将噪声从数据中分离;然后,通过纯净像元指数(PPI)从LAI时间序列谱中提取5类主要地物类型终端单元(Endmember),从而对地物进行分类并制图;最后,结合2000年江西省兴国县1 10万比例尺的土地利用/覆盖矢量图对本研究分类结果进行检验。结果表明,该方法的地物分类精度达到74.45%,其分类方法是有效可行的。  相似文献   

9.
以内蒙古锡林河流域典型草地为研究样区,基于新一代微卫星CHRIS/PROBA高光谱遥感数据,利用双层冠层反射率模型(A two - layer Canopy Reflectance Model,ACRM)定量反演叶面积指数(LAI).首先对高光谱数据进行预处理和统计分析,并结合反演结果对角度信息的敏感性进行分析,确定适...  相似文献   

10.
黑河流域叶面积指数的遥感估算   总被引:7,自引:2,他引:7  
研究利用Landsat7ETM+遥感数据获取黑河流域植被叶面积指数(LAI)空间分布的可行性。该研究是基于黑河流域分布式水文模型的一个重要输入项———LAI空间分布数据的需要而产生的。文章在详尽的野外观测数据基础上,分别探究实测LAI与同时相ETM+3、4、5、7波段反射率及相关植被指数(SR、NDVI、ARVI、RSR、SAV I、PVI、GESAVI)的相关关系,率定最佳的LAI遥感反演及其空间分布方案。研究发现,针对特定的自然条件,将研究区分为植被覆盖度小的稀疏立地和覆盖度大的密集立地,分别采用土壤调节植被指数(SAVI)和大气阻抗植被指数(ARVI)进行2种林地的LAI估算最为可靠,在此基础上,提出黑河地区LAI估算及其空间分布的遥感制图方案。  相似文献   

11.
水稻叶面积指数的高光谱遥感估算模型   总被引:43,自引:2,他引:43  
通过不同氮素营养水平的水稻田间试验 ,采用单变量线性与非线性拟合模型和逐步回归分析 ,用1 999年试验数据为训练样本 ,建立水稻LAI的高光谱遥感估算模型 ,用 2 0 0 0年试验数据作为测试样本数据 ,对其精度进行评价和验证。结果表明 ,高光谱变量与LAI之间的拟合分析中 ,蓝边内一阶微分的总和与红边内一阶微分的总和的比值和归一化差植被指数是最佳的变量  相似文献   

12.
江波 《遥感学报》2010,14(1):23-37
运用动态谐波回归模型(Dynamic Harmonic Regression,DHR)对MODIS的长时间序列的LAI产品进行分析,可以从中分离出LAI随时间变化的多年趋势、季节变化及残差等主要成分,通过建立的模型实现LAI年间变化的短时预测。本文将所述DHR模型分析方法试用于遥感数据产品随时间变化的信息提取,对LAI年间变化的预测结果证明该方法用于遥感像元尺度LAI产品的时间序列分析与预测的效果良好。  相似文献   

13.
利用1982-2012年的GLASS LAI数据,结合世界粮农组织(FAO)2000年发布的全球生态环境分类图,对亚马逊热带雨林31年的植被变化进行了综合分析,采用点与面相结合的分析方法,全面地反映雨林植被的变化情况。不同于过去研究中固定研究范围或直接研究整个南美洲区域,本文采用动态静态边界相结合的方法,在考虑热带雨林动态范围变化的同时也强调研究区域的内部变化。结果显示,亚马逊热带雨林叶面积指数在31年中整体呈现波动变化,进入2000年以后,热带雨林范围内平均叶面积指数先下降后增加,整体相对稳定。在空间分布上,由于人类毁林开荒,巴西境内的热带雨林以及热带雨林部分边缘地带的叶面积指数在31年中明显下降,热带雨林东南边界持续收缩;除此之外,雨林内部的叶面积指数波动上升,这是受到全球气候变暖的影响。结果与过去的研究进行对比,具有较好的一致性。研究论证了利用具有中国自主知识产权的GLASS LAI数据可以进行长时间序列大尺度的地表植被状况监测。  相似文献   

14.
基于森林模型参数先验知识估算高分辨率叶面积指数   总被引:1,自引:0,他引:1  
张静宇  王锦地  石月婵 《遥感学报》2020,24(11):1342-1352
目前,估算高分辨率叶面积指数LAI(Leaf Area Index)的常用方法是采用大量地面测量数据和遥感数据建立统计模型,再用统计模型估算LAI。然而,与农田地面测量实验相比,森林地面测量实验获取的观测数据更加有限,这使得基于统计模型的森林高分辨率LAI的估算精度低,难以满足应用需求。为此,本文提出一种基于森林模型参数先验知识、使用森林研究区少量的LAI地面测量数据和归一化植被指数NDVI数据估算森林高分辨率LAI的方法。首先,获取全球20个森林实验区的LAI地面测量数据和NDVI数据,建立LAI-NDVI统计模型并提取森林模型参数的先验知识。然后,以一个新的森林站点Concepción作为研究区,将该研究区的数据分为建模数据和验证数据两个部分。使用研究区有限的建模数据对森林模型参数先验知识进行本地化校正得到优化模型,优化模型用于估算森林高分辨率LAI,使用验证数据评价LAI的估算精度。同时,选取了Camerons站点、Gnangara站点、Hirsikangas站点评价本文方法的LAI估算精度。使用地面测量LAI验证基于森林模型参数先验知识估算高分辨率LAI的结果精度,经验证4个森林站点的均方根误差分别为0.6680,0.4449,0.2863,0.5755。研究结果表明:在仅有少量观测数据时,采用本方法能有效地提高森林高分辨率LAI的估算精度。因此,本方法可为森林高分辨率LAI的遥感估算提供参考。  相似文献   

15.
WOFOST模型与遥感数据同化的土壤速效养分反演   总被引:1,自引:1,他引:1  
土壤速效养分是作物生长的必要条件,合理控制土壤速效养分含量对粮食增产、农民增收以及环境保护都有重要意义。随着现代农业技术的发展,可以通过变量施肥将土壤速效养分含量控制在最佳状态,这也对土壤养分的获取精度提出了更高的要求。当前的主要土壤速效养分遥感监测方法在监测精度、稳定性、成本控制和可推广性依然存在一定不足,甚至限制对变量施肥的指导作用。本文针对传统土壤速效养分估算方法的不足,提出了利用作物模型与时间序列遥感数据相结合实现耕层土壤速效养分反演的新思路,该思路以养分缺失引起的作物长势参数的变化为切入点,在数据同化算法设计和养分模块优化改造的基础上,利用作物长势参数遥感监测结果与模型模拟结果的差异设计了土壤速效养分反演算法,实现速效养分含量信息的有效获取。设计地面观测实验并利用地面观测数据对反演精度进行评价,结果表明该方法可以对土壤中的速效养分进行实时、高精度的稳定反演,3种主要的速效养分速效氮、有效磷和速效钾的R2分别达到了0.68、0.74和0.52,平均相对误差分别为7.45%、6.17%和9.97%。  相似文献   

16.
基于数据同化的元胞自动机   总被引:2,自引:2,他引:2  
提出基于集合卡尔曼滤波(EnKF)的元胞自动机(CA)模型。在CA模型中,由于不同的样本会训练出不同参数值 的转换规则,且获取的转换规则在整个模拟过程中不能改变等原因,误差在模拟过程中会不断累积。本文在CA模型中 引入集合卡尔曼滤波的数据同化方法,建立了基于集合卡尔曼滤波的数据同化CA模型,同化遥感观测数据,根据得出 的同化值修正模拟结果使之向真实情况逼近。利用该模型模拟了广东省东莞市的发展情景(1995年—2005年),实验表 明,与传统CA模型相比,基于集合卡尔曼滤波的CA模型能够融合遥感观测数据,并能更有效地模拟城市扩张过程,达 到良好的模拟效果。  相似文献   

17.
地上生物量能够有效反映作物的生长状态,其信息的实时估算对产量预测和农田生产管理都有重要意义。作物生长模型因其详尽的生理生化基础和对生长过程数字化描述能力,成为生物量估算的理想模型。近年来,研究人员利用数据同化算法将时间序列遥感数据同化到作物生长模型中,实现了作物模型由基于气象站的点模拟到区域尺度面模拟的外推,使生物量模拟结果同时具备大范围和机理性两个方面的特点。这一模式下,时间序列的遥感数据质量将对生物量模拟精度产生直接影响,作物生长后期受到光谱饱和的影响,遥感数据的作物冠层信息获取能力会出现明显下降,因此有必要对该阶段遥感数据和作物模型的结合方式进行优化,提升生物量模拟精度。本文针对东北地区春玉米生物量遥感估算存在的问题,提出了利用WOFOST作物模型结合无人机(UAV)遥感数据实现作物生长后期生物量准确估算的新思路。新思路首先利用多光谱遥感数据获取WOFOST模型具备较高空间异质性的土壤速效养分参数以提升模型的空间信息模拟能力,使其能在一定程度上摆脱点尺度模拟的限制。同时,结合集合卡尔曼滤波算法将生长前期无人机(UAV)遥感数据同化到模型中,以缩短模型单独运行时间,减少模型运行过程中的参数误差累积,实现无遥感数据参与下的短期作物生长模拟,并输出生长后期相应的生物量模拟结果。最后,本文利用地面实测数据对新方法的生物量模拟精度进行了评价。结果表明,与全生育期数据同化相比,新方法的生物量估算精度有了明显的提升(全生育期同化:R2 = 0.45,RMSE = 4254.30 kg/ha;新方法:R2= 0.86,RMSE = 2216.79 kg/ha)。  相似文献   

18.
AWiFS sensor on board IRS-P6 (Resourcesat-1), with its unique features—wide swath and 5-day revisit capability provides excellent opportunities to carry out in-season analysis of irrigated agriculture. The study carried out in Hirakud command area, Orissa State indicated that the progression of rice crop acreage could be mapped through analysis of time series AWiFS data set. The spectral emergence pattern of rice crop was found useful to identify the period of rice transplantation and its variability across the command area. This information, integrated with agro-meteorological data, was used to quantify 10-daily canal-wise irrigation water requirement. A comparison with field measured actual irrigation supplies indicated an overall supply adequacy of 88% and showed wide variability at lateral canal level ranging between 18% and 109%. The supply pattern also did not correspond with the chronological variations associated with crop water requirement, supplies were 15% excess during initial part of season (December and January) and were 20.1% deficit during later part of season (February to April). Rescheduling the excess supplies of the initial period could have reduced the deficit to 15% during peak season. The study has demonstrated the usefulness of AWiFS data to generate the irrigation water requirement by mid-season, subsequent to which 38% supplies were yet to be allocated. This would support the irrigation managers to reschedule the irrigation water supplies to achieve better synchronization between requirement and supply leading to improved water use efficiency.  相似文献   

19.
标准的卡尔曼滤波可以扩展到非线性模型,即将泰勒公式应用于状态方程和观测方程,得到扩展卡尔曼滤波公式。首先推导了计算公式,研究了迭代计算方法,并将其用于GPS数据的实时处理。  相似文献   

20.
GNSS coordinate time series data for permanent reference stations often suffer from random, or even continuous, missing data. Missing data interpolation is necessary due to the fact that some data processing methods require evenly spaced data. Traditional missing data interpolation methods usually use single point time series, without considering spatial correlations between points. We present a MATLAB software for dynamic spatiotemporal interpolation of GNSS missing data based on the Kriged Kalman Filter model. With the graphical user interface, users can load source GNSS data, set parameters, view the interpolated series and save the final results. The SCIGN GPS data indicate that the software is an effective tool for GNSS coordinate time series missing data interpolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号