首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar System Research - The paper presents the results of a study of the dynamic structure of near-Earth orbital space in the 1 : 2 resonance region with Earth’s rotation speed. The results...  相似文献   

2.
The Earth’s rotation is accompanied by free circadian oscillations of its liquid core in the inner cavity of the lower mantle, which perturb the angular momentum of the entire Earth and produce an additional free nutation of the celestial pole called free core nutation (FCN). Since this nutation causes resonances in the diurnal tides and in the expansions of luni—solar nutation, its study, especially an improvement of the FCN period, is of fundamental importance for the theory of the Earth’s rotation. We have determined the FCN parameters from a joint analysis of equidistant series of coordinates of the celestial pole obtained from the combined processing of VLBI observations on global networks of stations for the interval 1984.0–2008.4 by IERS (International Earth Rotation and Reference System Service, Paris, France) and NEOS (National Earth Orientation Service, Washington, USA). Applying a moving least-squares filter (MLSF) to these data has shown that the FCN period averaged over this time interval differs significantly from the theoretical one and its phase varies over a wide range. Using the mean quadratic collocation (MQC) method, we have obtained a new, more accurate stochastic FCN model. Its analysis by the envelope method has revealed long-term linear phase trends, calling into question not only the adopted FCN period but also its stability and, hence, the stability of the resonant effects in the Earth’s luni—solar nutation.  相似文献   

3.
Solar System Research - The paper presents the results of studying the dynamics of the numbered near-Earth asteroids (NEAs) passing through the Earth’s gravity sphere (256000 km from the...  相似文献   

4.
The theory of velocity dependent inertial induction, based upon extended Mach’s principle, has been able to generate many interesting results related to celestial mechanics and cosmological problems. Because of the extremely minute magnitude of the effect its presence can be detected through the motion of accurately observed bodies like Earth satellites. LAGEOS I and II are medium altitude satellites with nearly circular orbits. The motions of these satellites are accurately recorded and the past data of a few decades help to test many theories including the general theory of relativity. Therefore, it is hoped that the effect of the Earth’s inertial induction can have any detectable effect on the motion of these satellites. It is established that the semi-major axis of LAGEOS I is decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligible at that altitude, a proper explanation of the secular change has been wanting, and, therefore, this paper examines the effect of the Earth’s inertial induction effect on LAGEOS I. Past researches have established that Yarkovsky thermal drag, charged and neutral particle drag might be the possible mechanisms for this orbital decay. Inertial induction is found to generate a perturbing force that results in 0.33 mm/d decay of the semi major axis. Some other changes are also predicted and the phenomenon also helps to explain the observed changes in the orbits of a few other satellites. The results indicate the feasibility of the theory of inertial induction i.e. the dynamic gravitation phenomenon of the Earth on its satellites as a possible partial cause for orbital decay.  相似文献   

5.
The appearance of features with cusp points on the diagrams of changes in the coordinates of the Earth’s instantaneous pole (polhodes) is considered as the result of mapping onto the plane of its displacement over the surface during the Earth’s rotational-translational motion. The results of qualitative and quantitative analyses of the data on the coordinates of the Earth’s instantaneous pole are discussed. The basic principles of the theory of Whitney singularities and their application for explaining the bifurcations of the equilibrium positions for the Zeeman catastrophe machine (Arnold 1990) are used in the analyses.  相似文献   

6.
An explanation is offered for the impulsive increase in the concentration of cosmogenic radiocarbon in annual tree rings (Δ14C ~ 12‰) from AD ?775. A possible cause of such an increase could be the high-energy emission from a Galactic gamma-ray burst. It is shown that such an event should not lead to an increase in the total production of 10Be in the atmosphere, as distinct from the effect of cosmic-ray fluxes on the atmosphere. At the same time, the production of an appreciable amount of 36Cl, which can be detected in Greenland and Antarctica ice samples of the corresponding age, should be expected. This allows the effects caused by a gamma-ray burst and anomalously powerful proton events to be distinguished.  相似文献   

7.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

8.
We address the relation between an ancient total eclipse, which occurred on A.D.1542 August 11 and the variation of Earth‘‘s rotation. The total eclipse was recorded in some ancient Chinese books, especially in local chronicles. Some of the documents include useful information for determining the location of the totality zone. The parameters of the eclipse are calculated by using the DE406 Ephemeris.A high-precision value of AT which expresses the variation of the Earth‘‘s rotation,of about 300 ~ 380 s, is obtained.  相似文献   

9.
We consider the history of discovery and justify the existence in the Solar system of a new class of bodies—minicomets, i.e., bodies of cometary nature and composition but of low mass. Two classes of minicomets are distinguished: icy ones similar to the Tunguska meteorite, and snow ones, which break up at high altitudes.  相似文献   

10.
By means of spectral analysis, oscillations have been detected in many-year time series of deviations in the duration of days from the standard that cannot be explained within the framework of existing gravitational theory. The solution of the problem of the origin and structure of these oscillations is associated with the essence of the phenomena taking place inside the Earth and the mechanisms of energy transfer by external fields and the Sun. The effect of the Sun on the Earth’s rotation also leads to the formation of a unified cyclic background, resulting in correlated oscillations in all shells of the Earth, as well as in its atmosphere and its nucleus. Ground magnetic fields of the Earth and the Sun play the leading role in the abovementioned unified cyclic process. The results of spectral autoregressive and wavelet analyses of experimental data concerning deviations in the duration of days from the standard in the years 1832–2006, ground geomagnetic field intensities in 1832–2006, and the mean magnetic field of the Sun during the period from 1975 to 2005 have been discussed in this paper to reveal and compare correlating oscillations. To analyze a short-period (31-yr-long) series of daily data on the mean magnetic field of the Sun, the results of wavelet transformations (the Morlet wavelet) of the detected amplitude of a burst envelope with a carrier frequency of 13 cycles/yr have been obtained.  相似文献   

11.
A study of the Earth’s rotation in space reveals a complex pattern of variations in its orientation, the excitation mechanisms of these variations, and their manifestations in various natural processes. The Earth’s rotation rate is not constant but exhibits complex fluctuations that account for some fraction of 108 (corresponding to variations of several milliseconds (ms) in the length of the day). These variations span a wide spectrum of time scales, from hours to centuries or longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. We discuss the results of our statistical comparison of long series of observations to reveal the most coherent variations. The spectral composition of the experimental time series has been determined using modified periodogram and single-channel autoregression methods. A comparative analysis has been performed by a two-channel autoregression spectral estimation method. The results of our comparison of the time series suggest that the fluctuations with periods of about 73 years are highly coherent.  相似文献   

12.
The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.  相似文献   

13.
14.
The properties of acoustic-gravity waves in the polar regions of the Earth’s thermosphere have been studied. It has been shown that the change in AGW amplitudes occurs against the background of large-scale rotational movements of the medium in the polar thermosphere. The amplitudes of waves increase with AGW propagation against the motion of the medium and decrease when AGW propagate along rotation. An analytical expression for the gain coefficient of AGW perturbations is obtained; the wave’s amplification effect in the opposite wind given the characteristic parameters of the thermosphere is estimated. The results are consistent with the measurements of AGW parameters in the polar regions from the “Dynamic Explorer 2” satellite.)  相似文献   

15.
J. Javaraiah 《Solar physics》2013,287(1-2):197-214
Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985?–?2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94R,0.95R,…,1.0R measured by the Global Oscillation Network Group (GONG) during the period 1995?–?2010, ii) the data on the soft-X-ray corona determined from Yohkoh/SXT full-disk images for the years 1992?–?2001, iii) the data on small bright coronal structures (SBCS) that were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998?–?2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986?–?2007. A large portion (up to ≈?30° latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94R and 0.98R. The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging behind that of the equatorial-rotation rate determined from the GONG measurements by one to two years. The amplitude of the GONG measurements is very small. The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data. The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (>?|3°|?day?1) of the sunspot groups. Implications of these results are pointed out.  相似文献   

16.
Statistical characteristics of meteoroids with kinetic energy from 0.1 to 440 kt TNT are estimated based on NASA satellite observations made in 1994–2016. The distributions of the number of falling meteoroids are constructed and analyzed based on the values of their initial kinetic energy, initial velocity, initial mass, altitude, geographic coordinates of the maximum total radiated energy region, and the year of the fall. Correlation dependences “mass–initial kinetic energy,” “maximum total radiated energy region altitude–initial kinetic energy,” and “maximum total radiated energy region altitude–initial velocity (the square of the initial velocity)” are constructed.  相似文献   

17.
Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, and in the magnetotail will be reviewed. Turbulence features like the fluctuation level, the spectral power law index, the turbulence anisotropy and intermittency, and the turbulence driver will be addressed.  相似文献   

18.
In a previous paper (Hou et al. in Celest Mech Dyn Astron 119:119–142, 2014a), the problem of dynamical symmetry between two Jupiter triangular libration points (TLPs) with Saturn’s perturbation in the present configuration of the two planets was studied. A small short-time scale spatial asymmetry exists but gradually disappears with the time going, so the planar stable regions around the two Jupiter TLPs should be dynamically symmetric from a longtime perspective. In this paper, the symmetry problem is studied when the two planets are in migration. Several mechanisms that can cause asymmetries are discussed. Studies show that three important ones are the large short-time scale spatial asymmetry when Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn in the planet migration process, and the chaotic nature of Trojan orbits during the planet migration process. Their joint effects can cause an observable difference to the two Jupiter Trojan swarms. The thermal Yarkovsky effect is also found to be able to cause dynamical differences to the two TLPs, but generally they are too small to be practically observed.  相似文献   

19.
Based on the astronomical ephemerides DE-406, theoretical calculations have been performed of the interannual variability of the Earth’s insolation related to celestial-mechanical processes for 365 points of a tropical year in the time period from 1900 to 2050. It has been determined that the average amplitude of variations of the interannual insolation is 0.310 W/m2 (0.023% of the solar constant). The calculated variations are characterized by strict periodicity that corresponds with the length of a synodic month. Connection between the extreme values of the calculated insolation variability and syzygies has been defined. The average amplitude of the calculated variability exceeds by 1.7 times (0.01% of the solar constant) the amplitude of the interannual variability in the 11-year variation of the total Earth’s insolation.  相似文献   

20.
The Moon’s physical libration in latitude generated by gravitational forces caused by the Earth’s oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth’s oblateness: a) has little effect on the instantaneous axis of Moon’s rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon’s celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse’s axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon’s poles of rotation move. The dynamical reason for the inclination of the Moon’s mean equator with respect to the ecliptic is oblateness of the body of the Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号