首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the long-term variability of solar activity is of both astrophysical and geoscientific interest. Reconstructions of solar activity over multiple millennia are traditionally based on cosmogenic isotopes 14C or 10Be measured in natural terrestrial archives, but the two isotopes exhibit significant differences on millennial time scales, so that our knowledge of solar activity at this time scale remains somewhat uncertain. Here we present a new potential proxy of solar activity on the centennial-millennial time scale, based on a chemical tracer, viz. nitrate content in an ice core drilled at Talos Dome (Antarctica). We argue that this location is optimal for preserving the solar signal in the nitrate content during the Holocene. By using the firn core from the same location we show that the 11-year and Gleissberg cycles are present with the variability of 10??C?25?% in nitrate content in the pre-industrial epoch. This is consistent with the results of independent efforts of modeling HNO3 and NO y in Antarctic near surface air. However, meteorological noise on the interannual scale makes it impossible to resolve individual solar cycles. Based on different processes of formation and transport compared to cosmogenic isotopes, it provides new, independent insight into long-term solar activity and helps resolve the uncertainties related to cosmogenic isotopes as diagnostics of solar activity.  相似文献   

2.
Ice divide–dome behaviour is used for ice sheet mass balance studies and interpretation of ice core records. In order to characterize the historical behaviour (last 400 yr) of Dome C and Talos Dome (East Antarctica), ice velocities have been measured since 1996 using a GPS system, and the palaeo-spatial variability of snow accumulation has been surveyed using snow radar and firn cores. The snow accumulation distribution of both domes indicates distributions of accumulation that are non-symmetrical in relation to dome morphology. Changes in spatial distributions have been observed over the last few centuries, with a decrease in snow accumulation gradient along the wind direction at Talos Dome and a counter-clockwise rotation of accumulation distribution in the northern part of Dome C. Observations at Dome C reveal a significant increase in accumulation since the 1950s, which could correlate to altered snow accumulation patterns due to changes in snowfall trajectory. Snow accumulation mechanisms are different at the two domes: a wind-driven snow accumulation process operates at Talos Dome, whereas snowfall trajectory direction is the main factor at Dome C. Repeated GPS measurements made at Talos Dome have highlighted changes in ice velocity, with a deceleration in the NE portion, acceleration in the SW portion and migration of dome summit, which are apparently correlated with changes in accumulation distribution. The observed behaviour in accumulation and velocity indicates that even the most remote areas of East Antarctica have changed from a decadal to secular scale.  相似文献   

3.
Ionization in the polar atmosphere causes the formation of nitrate compounds, which are frozen out and incorporated into the layers of the polar ice sheets. From a 122-m ice core collected in 1992 on the central Greenland ice sheet, it has been possible to examine a solar signal in a ultra-high resolution record of nitrate concentrations. The sequence extends over a period of 415 years at a temporal resolution of no less than one analysis per month (total number of samples 7776 resulting from 1.5 cm sampling along the entire core). This type of measurement reveals major nitrate anomalies which are thought to result from the injection of individual solar proton events into the winter polar stratosphere. For this reason, the large nitrate anomalies provide the possibility to delineate a signal of solar activity well beyond the known geophysical records.  相似文献   

4.
Two sets of nitrate (NO3 ) concentration data in Central Greenland ice, obtained through the GISP2 collaboration and by the University of Kansas, were analyzed statistically. The two records correlate well over time scales from a few years up to a century. They both contain quasi five-year, decadal and century-type time variations. A quasi five-year periodicity resulting from increases in the mean nitrate concentration before and after maximum sunspot number was confirmed. A tendency of solar proton events to occur more frequently during the rise/decline phases of the solar cycle may cause a quasi five-year variation. Century-type (60–110 yr) variability in nitrate outstrips the corresponding Gleissberg cycle in sunspots by 12–17 years and changes synchronously (correlates with zero phase shift) with the smoothed length of the solar Schwabe cycle. A significant correlation between century-type periodicities for nitrates in Greenland ice and northern Fennoscandian temperatures was established. The results show that despite a strong dependence on local meteorology, nitrate concentration in ice contains valuable information about global geophysical phenomena in the past.  相似文献   

5.
A two-dimensional numerical model with coupled photochemistry and dynamics has been used to investigate the response of the middle atmosphere (16–116 km) to changes in solar activity over the 11-year solar cycle. Model inputs that vary with solar cycle include solar radiation, cosmic ray and auroral ionization rates and the flux of NOx at the model's upper boundary.In this study, the results of model runs for solar cycle minimum and maximum conditions are compared. In the stratosphere, using currently accepted estimates of changes in solar radiation at wavelengths longer than 180 nm, only small responses in ozone, temperature and zonal winds are obtained. On the other hand, changes at shorter wavelengths, and the effects of particle precipitation, lead to large variations in the abundances of trace species in the thermosphere and upper mesosphere. In particular, very large abundances of NOx are produced above 90 km by auroral particle precipitation. Considerable amounts of NOx are transported subsequently to the stratosphere by the global mean meridional circulation. It is shown that this excess NOx can lead to significant decreases in ozone concentrations at high latitudes and that it may explain observations of nitrate deposition in Antarctic snow.  相似文献   

6.
The recovery of several thousand meteorite fragments from Antarctica has led to speculation that accumulations may occur on the Earth's other major ice caps. Meteorites falling over the past 80,000 years on the Devon Island ice cap in the Canadian Arctic may be exposed at the surface near the ice cap margin. From the terrestrial meteorite flux, ice movement rates, and fragmentation factors it is calculated that 12,560 samples of 150 g mass are potentially concentrated in a 65 km2 zone along the northwest margin. A search of this region on foot and by helicopter in July, 1981, failed to recover any specimens. Although metre-sized gneissic boulders, plucked from the underlying Precambrian basement, were concentrated in this zone it is postulated that the unseasonal 30 cm snow cover on the ice prohibited the recognition of possible meteorite specimens, which may average only 5 cm in diameter.  相似文献   

7.
M. Podolak  A.G.W. Cameron 《Icarus》1974,22(2):123-148
Models of the giant planets were constructed based on the assumption that the hydrogen to helium ratio is solar in these planets. This assumption, together with arguments about the condensation sequence in the primitive solar nebula, yields models with a central core of rock and possibly ice surrounded by an envelope of hydrogen, helium, methane, ammonia, and water. These last three volatiles may be individually enhanced due to condensation at the period of core formation. Jupiter was found to have a core of about 40 earth masses and a water enhancement in the atmosphere of about 7.5 times the solar value. Saturn was found to have a core of 20 earth masses and a water enhancement in the atmosphere of about 25 times the solar value. Rock plus ice constitute 75–85% of the mass of Uranus and Neptune. Temperatures in the interiors of these planets are probably above the melting points, if there is an adiabatic relation throughout the interiors. Some aspects of the sensitivities of these results to uncertainties in rotational flattening are discussed.  相似文献   

8.
A one-dimensional, time-dependent model of the neutral and ion composition of the middle atmosphere is used to study the processes controlling the production and loss of odd nitrogen species during particle ionization events. From consideration of the cross-sections for the relevant ionization and dissociation reactions we conclude that between 1.3 and 1.6 odd nitrogen atoms per ion pair are produced in the middle atmosphere. The value in the thermosphere is larger due to the role of atomic oxygen. The time-dependent mutual destruction of odd nitrogen by the reaction N(4S) +NO→ N2+O must be included and the assumption of a nitric oxide production normalized to the ionization rate is invalid. A simulation of the 1972 August solar proton event is presented. The calculated ozone depletion occurring during the event due to the increase in odd nitrogen agrees well with the measured ozone changes.  相似文献   

9.
An investigation is made of the “white earth” scenario, wherein the positive feedback mechanism, involving temperature, snow/ice cover,and albedo, renders the earth's surface covered with permanent snow freezes the oceans when the solar input is sufficiently low. A three-dimensional energy budget climate model is used to stimulate the earth's response to a 30% decrease in the solar constant. The decrease occurs over a period of 90 years. The model simulates an additional 100 years to allow conditions to stabilize. At the end of the model run, the planetary mean surface temperature is 204.8°K, the oceans are completely frozen over, and the maximum seasonal mean temperature any grid point of the planet is 251.6°K in the western Gobi Desert in JJA. The highest average annual temperature is 238.7°K in western Zaire. A significant portion of the planet's land surface is free of permanent snow cover. The result of this model run suggest that the hydrologic balance may provide a significant negative feedback mechanism to counter the snow/ice-albedo positive feedback mechanism and that the earth's climate may be less sensitive to variations in the solar constant than previously believed.  相似文献   

10.
《Icarus》1987,72(1):95-127
The possibility that snowmelt could have provided liquid water for valley network formation early in the history of Mars is investigated using an optical-thermal model developed for dusty snowpacks at temperate latitudes. The heating of the postulated snow is assumed to be driven primarily by the absorption of solar radiation during clear sky conditions. Radiative heating rates are predicted as a function of depth and shown to be sensitive to the dust concentration and the size of the ice grains while the thermal conductivity is controlled by temperature, atmospheric pressure, and bulk density. Rates of metamorphism indicate that fresh fine-grained snow on Mars would evolve into moderately coarse snow during a single summer season. Results from global climate models are used to constrain the mean-annual surface temperatures for snow and the atmospheric exchange terms in the surface energy balance. Mean-annual temperatures within Martian snowpacks fail to reach the melting point for all atmospheric pressures below 1000 mbar despite a predicted temperature enhancement beneath the surface of the snowpacks. When seasonal and diurnal variations in the incident solar flux are included in the model, melting occurs at midday during the summer for a wide range of snow types and atmospheric pressures if the dust levels in the snow exceed 100 ppmw (parts per million by weight). The optimum dust concentration appears to be about 1000 ppmw. With this dust load, melting can occur in the upper few centimeters of a dense coarse-grained snow at atmospheric pressures as low as 7 mbar. Snowpack thickness and the thermal conductivity of the underlying substrate determine whether the generated snow-melt can penetrate to the snowpack base, survive basal ice formation, and subsequently become available for runoff. Under favorable conditions, liquid water becomes available for runoff at atmospheric pressures as low as 30 to 100 mbar if the substrate is composed of regolith, as is expected in the ancient cratered terrain of Mars.  相似文献   

11.
We report the discovery of a large accumulation of micrometeorites (MMs) in a supraglacial moraine at Larkman Nunatak in the Grosvenor Mountains of the Transantarctic Range in Antarctica. The MMs are present in abundances of ~600 particles kg−1 of moraine sediment and include a near-complete collection of MM types similar to those observed in Antarctic blue ice and within bare-rock traps in the Antarctic. The size distribution of the observed particles is consistent with those collected from snow collections suggesting the moraine has captured a representative collection of cosmic spherules with significant loss of only the smallest particles (<100 μm) by wind. The presence of microtektites with compositions similar to those of the Australasian strewn field suggests the moraine has been accumulating for 780 ka with dust-sized debris. On the basis of this age estimate, it is suggested that accumulation occurs principally through ice sublimation. Direct infall of fines is suggested to be limited by snow layers that act as barriers to accumulation and can be removed by wind erosion. MM accumulation in many areas in Antarctica, therefore, may not be continuous over long periods and can be subject to climatic controls. On the basis of the interpretation of microtektites as Australasian, Larkman Nunatak deposit is the oldest known supraglacial moraine and its survival through several glacial maxima and interglacial periods is surprising. We suggest that stationary ice produced by the specific ice flow conditions at Larkman Nunatak explains its longevity and provides a new type of record of the East Antarctic ice sheet.  相似文献   

12.
The processes of dissociation and dissociative ionization of molecular nitrogen by solar UV radiation and by the accompanying flux of photoelectrons, as well as sputtering of the atmosphere by fluxes of magnetospheric ions and pick-up ions, are the main sources of translationally excited (hot, or suprathermal) nitrogen atoms and molecules in Titan's upper atmosphere. Since Titan does not possess an intrinsic magnetic field, ions from Saturn's magnetosphere can penetrate into the outer layers of Titan's atmosphere and sputter atoms and molecules from the atmosphere in momentum-transfer and charge exchange collisions. Atmospheric sputtering by corotating nitrogen ions and carbon-containing pick-up ions, as well as photodissociation-related losses, was considered previously by Lammer and Bauer (1993) and Shematovich et al. (2001, 2003). In this paper we investigate the processes of the formation and evolution of the fraction of suprathermal nitrogen atoms and molecules in the transition region of Titan's upper atmosphere using the previously developed Monte Carlo model for hot satellite and planetary coronas (Shematovich, 1999, 2004). It is established that the suprathermal nitrogen fraction in the transition region of Titan's upper atmosphere includes nitrogen atoms and molecules but the suprathermal nitrogen concentration is relatively small owing to high rates of escape from the atmosphere and to the efficient thermalization of suprathermal nitrogen at the altitudes of the relatively dense lower thermosphere. However, the scale height for suprathermal nitrogen in the transition region is much higher than that for the ambient atmospheric gas. Therefore, suprathermal nitrogen becomes one of the dominant components in the outer exosphere.  相似文献   

13.
Abstract— Thirty years of recoveries in East Antarctica have led to significant understanding of the regional characteristics associated with meteorite stranding surfaces. In Antarctica these sites are characterized by patches of snow‐free blue ice at high altitude on the icesheet in regions where iceflow is highly restricted. Melting is extremely rare or absent and sublimation rates are high, even though meteorite stranding surfaces are predominantly found within regions where accumulation typically dominates. Localized environmental conditions that persist for thousands of years or longer appear to be the dominant factor rather than shorter‐term or seasonal cycles. In this paper we describe our discovery of regions in Northeast Greenland with blue ice areas that exhibit many of the requisite characteristics, suggesting that they are excellent prospects for future meteorite recovery efforts.  相似文献   

14.
Abstract– Eight saponite‐rich micrometeorites with very similar mineralogy were found from the recent surface snow in Antarctica. They might have come to Earth as a larger meteoroid and broke up into pieces on Earth, because they were recovered from the same layer and the same location of the snow. Synchrotron X‐ray diffraction (XRD) analysis indicates that saponite, Mg‐Fe carbonate, and pyrrhotite are major phases and serpentine, magnetite, and pentlandite are minor phases. Anhydrous silicates are entirely absent from all micrometeorites, suggesting that their parental object has undergone heavy aqueous alteration. Saponite/serpentine ratios are higher than in the Orgueil CI chondrite and are similar to the Tagish Lake carbonaceous chondrite. Transmission electron microscope (TEM) observation indicates that serpentine occupies core regions of fine‐grained saponite, pyrrhotite has a low‐Ni concentration, and Mg‐Fe carbonate shows unique concentric ring structures and has a mean molar Mg/(Mg + Fe) ratio of 0.7. Comparison of the mineralogy to hydrated chondrites and interplanetary dust particles (IDPs) suggests that the micrometeorites are most similar to the carbonate‐poor lithology of the Tagish Lake carbonaceous chondrite and some hydrous IDPs, but they show a carbonate mineralogy dissimilar to any primitive chondritic materials. Therefore, they are a new variant of saponite‐rich micrometeorite extracted from a primitive hydrous asteroid and recently accreted to Antarctica.  相似文献   

15.
Dust particles obtained by filtering fresh snow collected from May to September 2017 in the vicinity of Vostok station in Antarctica were examined using a scanning electron microscope. The collection of dust particles contains 197 spherules ranging from 0.5 to 117 μm in diameter, the most abundant ones (n = 188) by far being iron oxide spherules. Analyses of meteorological and human activity data suggest an extraterrestrial origin of most of the spherical particles. The particle size distribution histogram showed a smooth increase in their number with decreasing size and a dramatic drop at sizes smaller than 3 μm. The number of spherical particles has an uneven distribution over time, with an intense peak in July 27–28, 2017 which correlates by dates with the peak of the Southern Delta Aquariids meteor shower. The size distribution of the particles collected during the same period indicates the presence of a mechanism that accelerates their fall to the Earth. We propose that they are effective centers of condensation of ice crystals in stratospheric clouds. Our data indicate that collection of micrometeorites with sizes of several microns from the fresh snow is possible, opening a new way for sampling micrometeorites, including separate meteor showers.  相似文献   

16.
Hammer et al. (Climatic Change 35 (1997) 1) report the presence of regularly spaced acidity peaks (H+,F-,Cl-) in the Byrd Station, Antarctica ice core. The event has a duration of about one century and falls at the beginning of the deglacial warming. Volcanism appears to be an unlikely cause since the total acid deposition of this event was about 18 fold greater than the largest known volcanic eruption, and since volcanic eruptions are not known to recur with such regularity. We show that the recurrence period of these peaks averages to 11.5±2.4 years, which approximates the solar cycle period, and suggest that this feature may have an extraterrestrial origin. We propose that this material may mark a period of enhanced interstellar dust and gas influx modulated by the solar cycle. The presence of this material could have made the Sun more active and have been responsible for initiating the warming that ended the last ice age.  相似文献   

17.
In the interstellar medium, the most probable source of organic molecules could be non-equilibrium processes driven by photons, cosmic rays, shock waves and solid bodies’ collisions. The dense cold phase of ISM host icy dust grains—important chemical catalyst during its life cycle. Such particles consist of mineral core composed by silicate or olivine admixed with metal sulfides and oxides, with the water-icy envelope containing organic molecules. Organic molecules in the ISM evolve and become later incorporated in solar system material (comets and meteorites).The formation of polypeptides from single amino acids was traced in simulation experiments representing the inner structure of icy dust grains. Experimental chamber was irradiated at subzero temperatures at the dosage of 2.54 kRad/min. Solid frozen solutions of Gly and Phe were taken as the experimental samples inserted into the metal tube kept at subzero temperatures in the presence of liquid nitrogen. Formation of di- and tri-peptides was demonstrated after applying mass-spectrometry and high performance liquid chromatography (HPLC) techniques.Having polypeptides within the icy matrix, dust grains with ice mantles are transported to warm, dense and active protostellar regions, where ultraviolet irradiation may become important and alter the grain composition. Furthermore UVC radiation may contribute to the formation of additional amounts of polypeptides, since short-wave photons are totally adsorbed by a thin outer layer. This presumption coincides with our previous investigations concerning UV impact on prebiotic formation of the main biological molecules. Combination of two irradiation types in different stages of interstellar flight could compensate the effects of low reagents concentration and temperature. Since the primordial Earth had no atmosphere, the natural carriers could get freely onto its surface and thus raise the concentration of organic molecules.  相似文献   

18.
M. A. Shea  D. F. Smart 《Solar physics》2004,224(1-2):483-493
Recent studies of the solar-terrestrial environment for the past 500 years have necessitated the use of a variety of historical databases: nitrates in ice cores, knowledge of large volcanic eruptions, sunspot numbers, mid-latitude aurora and geomagnetic records. The nitrate data are being used to identify large solar proton fluence events. The volcanic record helps to provide time markers for the ice core. The records of major geomagnetic storms and mid-latitude aurora have been used for additional identification. We also know that the Earth’s magnetic field is evolving with a present rapid decrease in magnitude. In addition the wandering magnetic pole must be considered in ascertaining what was “mid latitude” in historic times versus “mid latitude” in 2000. We illustrate how these databases are being used in recent studies of historic solar proton events.  相似文献   

19.
Share  G.H.  Murphy  R.J.  Dennis  B.R.  Schwartz  R.A.  Tolbert  A.K.  Lin  R.P.  Smith  D.M. 《Solar physics》2002,210(1-2):357-372
The RHESSI high-resolution spectrometer detected γ-ray lines and continuum emitted by the Earth's atmosphere during impact of solar energetic particles in the south polar region from 16:00–17:00 UT on 21 April 2002. The particle intensity at the time of the observation was a factor of 10–100 weaker than previous events when gamma-rays were detected by other instruments. This is the first high-resolution observation of atmospheric gamma-ray lines produced by solar energetic particles. De-excitation lines were resolved that, in part, come from 14N at 728, 1635, 2313, 3890, and 5106 keV, and the 12C spallation product at ∼ 4439 keV. Other unresolved lines were also detected. We provide best-fit line energies and widths and compare these with moderate resolution measurements by SMM of lines from an SEP event and with high-resolution measurements made by HEAO 3 of lines excited by cosmic rays. We use line ratios to estimate the spectrum of solar energetic particles that impacted the atmosphere. The 21 April spectrum was significantly harder than that measured by SMM during the 20 October 1989 shock event; it is comparable to that measured by Yohkoh on 15 July 2000. This is consistent with measurements of 10–50 MeV protons made in space at the time of the γ-ray observations.  相似文献   

20.
M. Min  C.P. Dullemond  C. Dominik 《Icarus》2011,212(1):416-426
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号