首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is still no consensus as to what causes galactic discs to become warped. Successful models should account for the frequent occurrence of warps in quite isolated galaxies, their amplitude as well as the observed azimuthal and vertical distributions of the H  i layer. Intergalactic accretion flows and intergalactic magnetic fields may bend the outer parts of spiral galaxies. In this paper we consider the viability of these non-gravitational torques to take the gas off the plane. We show that magnetically generated warps are clearly flawed because they would wrap up into a spiral in less than two or three galactic rotations. The inclusion of any magnetic diffusivity to dilute the wrapping effect causes the amplitude of the warp to damp. We also consider the observational consequences of the accretion of an intergalactic plane-parallel flow at infinity. We have computed the amplitude and warp asymmetry in the accretion model, for a disc embedded in a flattened dark matter halo, including self-consistently the contribution of the modes with azimuthal wavenumbers   m = 0  and   m = 1  . Since the m = 0 component, giving a U-shaped profile, is not negligible compared to the m = 1 component, this model predicts quite asymmetric warps, maximum gas displacements on the two sides in the ratio 3 : 2 for the preferred Galactic parameters, and the presence of a fraction ∼3.5 per cent of U-shaped warps, at least. The azimuthal dependence of the moment transfer by the ram pressure would produce a strong asymmetry in the thickness of the H  i layer and asymmetric density distributions in z , in conflict with observational data for the warp in our Galaxy and in external galaxies. The amount of accretion that is required to explain the Galactic warp would give gas scaleheights in the far outer disc that are too small. We conclude that accretion of a flow with no net angular momentum cannot be the main and only cause of warps.  相似文献   

2.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

3.
We investigate the close analogy between the solar radio emission with a quasi-harmonic spectrum structure and one of the microwave emission components of the Crab pulsar in the form of the so-called zebra pattern. The radio emission mechanism of this component can be provided by instability at double plasma resonance and can be realized in extraordinary (for a radio pulsar) conditions, namely in a nonrelativistic plasma with a relatively weak magnetic field. We point out possible models of the emission source in the form of a magnetic trap or a neutral current sheet with a transverse magnetic field localized in the corotating region of the pulsar magnetosphere far from the neutron star surface.  相似文献   

4.
Observational data on the dynamics of stars in the neighborhood of the sun indicate the existence of a third integral besides the integrals of the angular momentum and energy. The Poincaré integral is proposed as a third integral. The consequences of this assumption are derived and compared with available astrophysical data.  相似文献   

5.
The existence of the cosmic ray Halo in our Galaxy has been discussed for more than half a century. If it is real it could help to explain some puzzling features of the cosmic ray flux: its small radial gradient, nearly perfect isotropy and the low level of the fine structure in the energy spectra of the various particles. All these features could be understood if: (a) the Halo has a big size (b) cosmic rays in the Halo have a uniform spatial or radial distribution and (c) the cosmic ray density in the Halo is comparable or even higher than that in the Galactic Disk. The main topic of the paper concerns the present status of the anisotropy and a model for its formation. In our model the extremely small amplitude of the dipole anisotropy is due to the dilution of the anisotropy in the Disk by the dominating isotropic cosmic rays from the Halo. Some minor deviations from complete isotropy in the sub-PeV and PeV energy regions point out to the possible contribution of the Single Source with the phase of its first harmonic opposite to the phase produced by the Disk.  相似文献   

6.
L. Györi 《Solar physics》1989,120(2):421-430
For a perfectly aligned Coudé heliograph the north direction of Sun's image in the image plane of the heliograph changes linearly with the hour angle of the Sun or in a common heliograph it is constant. But if the alignment is not perfect and there are instrumental errors the angle between the north direction of the Sun's image and a direction fixed in the image plane is a complicated function of the hour angle of the Sun. In this paper we derive this dependence.  相似文献   

7.
Nine of the most important estimators known for the two-point correlation function are compared using a predetermined, rigorous criterion. The indicators were extracted from over 500 subsamples of the Virgo Hubble volume simulation cluster catalog. The "real" correlation function was determined from the full survey in a 3000 h(-1) Mpc periodic cube. The estimators were ranked by the cumulative probability of returning a value within a certain tolerance of the real correlation function. This criterion takes into account bias and variance, and it is independent of the possibly non-Gaussian nature of the error statistics. As a result, for astrophysical applications, a clear recommendation has emerged: the Landy & Szalay estimator, in its original or grid version (Szapudi & Szalay), is preferred in comparison with the other indicators examined, with a performance almost indistinguishable from the Hamilton estimator.  相似文献   

8.
We present VLA A-array 21-cm atomic hydrogen (H  i ) absorption observed against the central region of the starburst galaxy M82 with an angular resolution of ∼1.3 arcsec (≃20 pc). These observations, together with MERLIN H  i absorption measurements, are compared with the molecular (CO) and ionized ([Ne  ii ]) gas distributions and are used to constrain the dynamics and structure of the ionized, neutral and molecular gas in this starburst.
A position–velocity diagram of the H  i distribution reveals an unusual 'hole' feature which, when previously observed in CO, has been interpreted as an expanding superbubble contained within a ring of gas in solid body rotation. However, we interpret this feature as a signature of a nearly edge-on barred galaxy. In addition, we note that the CO, H  i and [Ne  ii ] position–velocity diagrams reveal two main velocity gradients, and we interpret these as gas moving on x1- and x2-orbits within a bar potential. We find the best fit to the data to be produced using a bar potential with a flat rotation curve velocity v b=140 km s−1 and a total length of 1 kpc, a non-axisymmetry parameter q =0.9, an angular velocity of the bar Ωb=217 km s−1 arcsec−1, a core radius R c=25 pc, an inclination angle i =80° and a projected angle between the bar and the major axis of the galaxy φ '=4°. We also discuss the orientation of the disc and bar in M82.  相似文献   

9.
Protostars in a group exert gravitational tidal torques on an aspherical nebula located in the group. The net torque transfers angular momentum from the orbital motions of the stars to rotation of the nebula. A relation can be derived between the parameters describing the protostars and the final angular momentum of the nebula. While the parameters concerned are uncertain, a conservative choice results in a value for the angular momentum equal to about 1/3 of that of the present solar system. This suggests that if the Sun formed in a group, tidal interactions with other protostars may account for a significant part of the angular momentum of the solar system.  相似文献   

10.
We use numerical simulations of the fragmentation of a  1000 M  molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the IMF, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with   M Jeans= 1, 2  and  5 M  , the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near  1 M  . Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at  ≈1 M  , even with an initial   M Jeans= 5 M  . We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas.  相似文献   

11.
In this paper we develop a statistical approach to resolve the transport problem for the tangential fluctuations of the geomagnetic field in the mantle. For the sake of simplicity we treat the mantle as a thick layer of vacuum and assume in addition that only a radial component of the magnetic field of the core penetrates through the core-mantle boundary. These assumptions allow us to find exact expressions for the tangential field components throughout the mantle. By using such expressions we construct a correlation tensor of tangential components and then, since the mantle is thick enough, study its asymptotic properties on the Earth surface. Incidentally, the correlation tensor trace happens to be equal to the correlation function of the radial component that was obtained by Pilipenko and Sokoloff (1992). Indeed, we provide a simple boundary problem which initially describes the diffusion functions. We also pay a special attention to transformation properties of the correlation tensor and find here some interesting analogies with secular variation data of the geomagnetic field  相似文献   

12.
The theory of the nutation for the rigid earth model at the second order   总被引:6,自引:0,他引:6  
We perform a complete reconstruction of the series of the nutation for a rigid Earth model with the use of the very accurate theories ELP2000 and VSOP82 for the motion of the Moon and the planets respectively, in such a way that all the individual contributions up to 0.005 mas should be taken. This implies the introduction of the planetary effects, of the influence of second-order parts of the potential of the Earth (J3, triaxiality), and some improvements due to an extension of the theory at the second order. All this increase notably the number of coefficients to be taken in account, and modifies also in a significant way the value of some of them.  相似文献   

13.
14.
15.
We have developed a cosmological model for the Earth rotation and planetary acceleration that gives a good account (data) of the Earth astronomical parameters. These data can be compared with the ones obtained using space-base telescopes. The expansion of the universe has shown to have an impact on the rotation of planets, and in particular, the Earth. The expansion of the universe causes an acceleration that is exhibited by all planets.  相似文献   

16.
We analyse a sample of 507 evolved (OH/IR) stars in the region (10°>ℓ>−45°), (| b |<3°). We derive average ages for subsets of this sample, and use those sets as beacons for the evolution of the Galaxy. In the bulge, the oldest OH/IR stars in the plane are 7.5 Gyr (1.3 M), and in the disc 2.7 Gyr (2.3 M). The vertical distribution of almost all AGB stars in the disc is found to be nearly exponential, with scaleheight increasing from 100 pc for stars ≲1 Gyr old to 500 pc for stars ≳5 Gyr old. There may be a small, disjunct population of OH/IR stars. The radial distribution of AGB stars is dictated by the metallicity gradient. Unequivocal morphological evidence is presented for the existence of a central bar, but parameters can be constrained only for a given spatial-density model. Using a variety of indicators, we identify the radii of the inner ultraharmonic (2.5 kpc) and corotation resonance (3.5 kpc). We show that the 3-kpc arm is likely to be an inner ring, as observed in other barred galaxies, by identifying a group of evolved stars that is connected to the 3-kpc H  i filament. Also, using several observed features, we argue that an inner-Lindblad resonance exists, at ∼1–1.5 kpc. The compositions of OH/IR populations within 1 kpc of the Galactic Centre give insight into the bar-driven evolution of the inner regions. We suggest that the bar is ∼8 Gyr old, relatively weak (SAB), and may be in a final stage of its existence.  相似文献   

17.
The study of the stochasticity of the asteroid belt requires the analysis of a large number of orbits. We detect the dynamical character of a set of 5 400 asteroids using the Fast Lyapunov Indicator, a method of analysis closely related to the computation of the Lyapunov Characteristic Exponents, but cheaper in computational time. For both regular and chaotic orbits we try to associate the motion to the underlying resonances network. For it we consider different methods of classification of rational numbers proposed by number theory, and we choose the one which seems to be strictly related to the dynamical behaviour of a system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In this paper analytical expressions are derived for the temporal variations ofJ 2 andJ 22 due to the tides of the solid Earth, taking into account only the deformation of the mantle, and employing a procedure already used by the authors in their Hamiltonian theory of the Earth's rotation, which obtain the necessary parameters in a direct way by integration of those provided by a selected model of Earth interior.Numerical tables giving the periodic variation of coefficients are given, as well as a new prediction for UT1. For J 2 and J 22 the amplitudes reach such a magnitude that both two variations should not be ignored in studies involving the analysis of highly precise satellite tracking data. Moreover, the possibility of improving our knowledge of the value of those harmonic coefficients in only a more exact digit appears as to be strongly dependent on the limitations in the theoretical modeling of the variations of the inertia tensor due to solid tides.  相似文献   

19.
The primary nature of the 13C neutron source is very significant for the studies of the s -process nucleosynthesis. In this paper we present an attempt to fit the element abundances observed in 16 s -rich stars using parametric model of the single neutron exposure. The calculated results indicate that almost all s -elements were made in a single neutron exposure for nine sample stars. Although a large spread of neutron exposure is obtained, the maximum value of the neutron exposure will reach about 7.0 mbarn−1, which is close to the theoretical predictions by the asymptotic giant branch (AGB) model. The calculated result is a significant evidence for the primary nature of the neutron source. Combining the result obtained in this work and the neutron exposure–initial mass relations, a large spread of neutron exposure can be explained by the different initial stellar mass and their time evolution. The possibility that the rotationally induced mixing process can lead to a spread of the neutron exposure in AGB stars is also existent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号