首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The archaeological site of Qasr Tilah, in the Wadi Araba, Jordan is located on the northern Wadi Araba fault segment of the Dead Sea Transform. The site contains a Roman-period fort, a late Byzantine–Early Umayyad birkeh (water reservoir) and aqueduct, and agricultural fields. The birkeh and aqueduct are left-laterally offset by coseismic slip across the northern Wadi Araba fault. Using paleoseismic and archaeological evidence collected from a trench excavated across the fault zone, we identified evidence for four ground-rupturing earthquakes. Radiocarbon dating from key stratigraphic horizons and relative dating using potsherds constrains the dates of the four earthquakes from the sixth to the nineteenth centuries. Individual earthquakes were dated to the seventh, ninth and eleventh centuries. The fault strand that slipped during the most recent event (MRE) extends to just below the modern ground surface and juxtaposes alluvial-fan sediments that lack in datable material with the modern ground surface, thus preventing us from dating the MRE except to constrain the event to post-eleventh century. These data suggest that the historical earthquakes of 634 or 659/660, 873, 1068, and 1546 probably ruptured this fault segment.  相似文献   

2.
We investigate the late Quaternary active deformation along the Jordan Valley segment of the left-lateral Dead Sea Fault and provide new insights on the behaviour of major continental faults. The 110-km-long fault segment shows systematic offsets of drainage systems surveyed at three sites along its southern section. The isotopic dating of six paleoclimatic events yields a precise chronology for the onset of six generations of gully incisions at 47.5 ka BP, 37.5 ka BP, 13 ka BP, 9 ka BP, 7 ka BP, and 5 ka BP. Additionally, detailed mapping and reconstructions provide cumulative displacements for 20 dated incisions along the fault trace. The individual amounts of cumulative slip consistently fall into six distinct classes. This yields: i) an average constant slip rate of 4.7 to 5.1 mm/yr for the last 47.5 kyr and ii) a variable slip rate ranging from 3.5 mm/yr to 11 mm/yr over 2-kyr- to 24-kyr-long intervals. Taking into account that the last large earthquake occurred in AD 1033, we infer 3.5 to 5 m of present-day slip deficit which corresponds to a Mw  7.4 earthquake along the Jordan Valley fault segment. The timing of cumulative offsets reveals slip rate variations critical to our understanding of the slip deficit and seismic cycle along major continental faults.  相似文献   

3.
The Northern Zhongtiaoshan Fault is a major deep fault at the southern margin of the Yuncheng Basin. There have been few studies on the fault, and the historical earthquakes are few and weak. However, the intensity of activity on the fault should never be underestimated. Through interpretations of aerial images, topography measurements and excavation of trenches, this paper studied the fault distribution, the surface deformation and the activity of the normal fault south of Salt Lake near the city of Yuncheng. By tracing faults in the three trenches, it was found that there had been at least three large paleoseismic events, at 1–3.5, 3.6–4.4 and 7.4–8.8 ka BP. Employing 14 C dating, we determined the same gravel layers in the uplifted side and downthrown side. Making differential Global Positioning System measurements of the vertical difference and topographic profile, we obtained the mean slip rate of the Northern Zhongtiaoshan Fault since 24.7 ka BP(0.75±0.05 mm/a). Using the results of relevant studies, we calculated the possible vertical fault displacement of one earthquake(2.35 m) and obtained the recurrence interval of characteristic earthquakes as 2940–3360 a after dividing the displacement by the mean slip rate.  相似文献   

4.
This work deals with the tectonic interpretation of an alignment of more than 300 sinkholes stretching along the Jordanian coast of the Dead Sea, Ghor Al Haditha area. Its dimensions are 6 km long with a width of 600 m. Sinkholes appeared during the last decades as a consequence of the very rapid lowering of the lake level. The linear shape was inferred from ground collapse inventories carried out between 1991 and 2008. The lineament is replaced and analyzed in its structural setting at regional and local scales. Its direction (N 24° E) is sub‐parallel to the ones displayed by many focal mechanisms, especially the one associated with the earthquake of the 23 April, 1979 (mb = 5·1; N 20° E ± 5°), which is representative of all focal mechanisms calculated on a fault plane compatible with the general direction of the Jordan‐Dead Sea Transform fault system for the east coast of the Dead Sea area. The alignment of sinkholes is constituted by 13 minor linear segments separated by as many empty spaces. Four minor linear units present an en‐echelon arrangement from which one can deduce the presence of a local extensional stress field. In this context, the sinkhole locations provide information of subsurface discontinuities interpreted as hidden fractures. In a close future, such results could support the work of decision‐makers and engineers in the projected development of the area. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The Litang fault zone (LFZ) is an important active fault within the northwestern Sichuan sub-block. To-gether with the Garzê-Yushu, Xianshuihe, and An-ninghe fault zones on its northern, eastern and south-eastern sides, the LFZ constitutes the lateral extrusion tectonic system in the southeastern part of the Qing-hai-Tibetan Plateau[1,2] (Fig. 1). According to instru-mental records, historical recordings and field investi- gation, an earthquake (Ms7.3) occurred on its middle to south se…  相似文献   

7.
The Yilan‐Yitong Fault Zone (YYFZ) is considered to be the key branch of the Tancheng‐Lujiang Fault Zone (TLFZ) in northeastern China. Although the Mesozoic and early Cenozoic deformation of the YYFZ has been studied intensively over the past century, few estimates of slip rate and recurrence interval of large earthquakes in the late Quaternary, which are the two most important parameters for understanding the potential seismic hazard of this crucial structure, were obtained. Based on integrated interpretations of high resolution satellite images and detailed geologic and geomorphic mapping, linear landforms were identified, including fault scarps and troughs, along the Shangzhi segment of the YYFZ, which exceeds 25 km in length. Synthesized results of trench excavations and differential GPS measurements of terrace surfaces indicate that two events (E1, E2) occurred along the Shangzhi segment during the late Holocene, which resulted in 3.2 ±0.1 m of total vertical co‐seismic displacement with clear features of thrust motion. 14C dating of samples suggests that event E1 occurred between 440 ±30 years BP and 180 ±30 years BP and that event E2 occurred between 4 090 ±30 years BP and 3 880 ±30 years BP, which indicates that the minimum vertical slip rate of the Shangzhi segment of the YYFZ has been approximately 0.8 ±0.03 mm/year during the late Holocene. Constraints from paleo events and the slip rate suggest that the average recurrence interval of major earthquakes on the YYFZ is 3 800 ±200 years. Historical documents in Korea show that event E1 possibly corresponds to the earthquake that occurred in AD 1810 (the Qing Dynasty in Chinese history) in the Ningguta area, which had surface‐wave magnitude (Ms) of 6.8–7.5. Studies of kinematics show that the right‐lateral strike‐slip with a reverse component has been dominant along the YYFZ during the late Holocene.  相似文献   

8.
IntroductionLocated in the western part of Sichuan Province, China, the Xianshuihe fault zone is a notable strong earthquake zone in the eastern Tibetan Plateau. At its northwestern end, the Xianshuihe fault zone overlaps the Ganzi-Yushu fault in a left-stepping pattern. The fault zone extends southeastwards through Luhuo, Daofu, Kangding, and Moxi and disappears near Shimian, with a total length of 400 km. The fault trends N40(-50°W in the north, and N20(-30°W to the south of Kangdi…  相似文献   

9.
A high-resolution Holocene seismic history of the Dead Sea Transform (DST) is established from laminated sedimentary cores recovered at the shores of the Dead Sea. Radiocarbon dating and annual laminae counting yield excellent agreement between disturbed sedimentary structures (identified as seismites) and the historical earthquake record: All recent and historical strong events of the area were identified, including the major earthquakes of A.D. 1927, 1837, 1212, 1033, 749, and 31 B.C. The total of 53 seismites recognized along the entire Holocene profile indicate varying recurrence intervals of seismic activity between a few and 1000 years, with a conspicuous minimum rate at 2100-31 B.C. and a noticeable maximum during the past six to eight centuries. Most of the epicenters of the correlated earthquakes are situated very close to the Dead Sea (within 150 km) or up to 400 km north of it along the DST. Between 1000 B.C. and A.D. 1063, and from A.D. 1600 to recent time the epicenters are all located on the northern segment of the DST, whereas prior to 1000 B.C. and between A.D. 1000 and 1600 they appear to scatter along several segments of the DST. We establish how the local intensity exerts a control on the formation of seismites. At historically estimated intensities greater than VII, all well documented earthquakes are correlated, whereas at intensities smaller than VI none are matching.The periods with enhanced earthquake rate along the DST correlate with those along the North Anatolian Fault as opposed to the intervening East Anatolian Fault. This may indicate some elastic coupling on plate-boundary scale that may also underlie escape and extrusion tectonics, typical of continental collision.  相似文献   

10.
2 Conclusion Fenghuangshan-Tianshui fault is a Holocene active fault. It laterally slips at the average rate of 1.1 mm/a during 6.4 ka and vertically slips at the average rate of 0.37 mm/a and 0.16 mm/a since the time 16.6 ka and 6.4 ka before respectively. Diaogoumeng-Dongjiawan segment has occurred an abrupt event in the period of 6.4 ka BP, which is assumed to be related to the 734 Tianshui M=7 earthquake, but further work is still necessary. Foundation item: Chinese Joint Seismological Science Foundation (198023).  相似文献   

11.
Fault slip rate is one of the most important subjects in active tectonics research, which reveals the activity and seismic potential of a fault. Due to the improvement of dating precision with the development of dating methods, Holocene geological markers, even the young markers of thousands or hundreds of years old, are widely used in fault slip rate calculation. Usually, uncertainties from a single event and erosion of the accumulated offsets are involved in fault slip rate determination. Two types of uncertainties are related to a single event; the first is the time elapsed since the latest (the most recent) event; the second is the period since the formation of the geological marker to the occurrence of the first event. High‐slip‐rate faults are more sensitive to these uncertainties than low‐slip‐rate faults. In this study, we studied quantitatively the effects of a single event on fault slip rate following the three classic earthquake models: the characteristic earthquake, uniform slip and variable slip models. We suggest that the erosion of the accumulated offset–lateral erosion on a strike‐slip fault, should also be considered in fault slip estimation. Therefore, we propose a differential method to obtain a reliable fault slip rate. In the differential method, the slip rate is the ratio of offset differentials and corresponding age differentials between the older and younger terraces along strike‐slip faults. This kind of differential method could avoid the uncertainties from the first and latest events, as well as that from the lateral erosion. By applying the differential method, we got the revised slip rates of ∼5–10 mm/year on the Altyn Tagh and Kunlun faults. These low slip rates could fit previous geodetic and geological fault slip rates and shortening rates as well as the millennial recurrence intervals of strong earthquakes along the major segments of these faults.  相似文献   

12.
The nearly EW-trending East Kunlun fault zone is the north boundary of the Bayan Har block.The activity characteristics and the position of the eastern end of its eastward extension are of great significance to probing into the dynamic mechanism of formation of the east edge of the Tibetan Plateau,and also lay the foundation for seismic risk assessment of the fault zone.The following results are obtained by analysis based on satellite image interpretation of landforms,surface rupture survey,terrace scarp deformation survey,and terrace dating data on the eastern part of the East Kunlun fault zone:(1)the Luocha segment is a Holocene active fault,where a reverse L-shape paleoearthquake surface rupture zone of about 50 km long is located;(2)the Luocha segment is characterized by left-lateral slip movement under the compression-shear condition since the later period of the Late Pleistocene,with a rate of 7.68–9.37 mm/a and a vertical slip rate of 0.7–0.9 mm/a,which are basically in accord with the activity rate of segments on its west side.The results indicate that it is a part of eastward extension of the East Kunlun fault zone;(3)the high-speed linear horizontal slip of the nearly EW-trending East Kunlun fault zone is blocked by the South China block at east,and transforms into the vertical movement of the nearly SN-NNE trending Minjiang fault zone and the Longmenshan fault zone,and the uplift of Longmenshan and Minjiang.The area where transform of the two tectonic systems occurred confines the position of the east end;(4)Luocha segment and Maqu segment constitute the"Maqu seismic gap",so,seismic risk at Maqu segment is higher than that at Luocha segment,which should attract more attention.  相似文献   

13.
The Qujiang Fault is one of the most seismically active faults in western Yunnan, China and is considered to be the seismogenic fault of the 1970 MS7.7 Tonghai earthquake. The Qujiang Fault is located at the southeastern tip of the Sichuan-Yunnan block. In this study, we examine the geometry, kinematics, and geomorphology of this fault through field observations and satellite images. The fault is characterized by dextral strike-slip movements with dip-slip components and can be divided into northwest and southeast segments according to different kinematics. The northwest segment shows right-lateral strike-slip with normal components, whereas it is characterized by dextral movements with the northeast wall thrusting over the opposite in the southeast segment. The offset landforms are well developed along the strike of the fault with displacements ranging from 3.7m to 830m. The Late Quaternary right-lateral slip rate was determined to be 2.3~4.0mm/a through dating and measuring on the offset features. The variation of the slip and uplift rates along the fault strike corresponds well to the fault kinematics segmentation: the slip rate on the northwest segment is above 3mm/a with an uplift rate of 0.6~0.8mm/a; however, influenced by the Xiaojiang Fault, the southeast segment shows apparent thrust components. The slip rate decreases to below 3.0mm/a with an uplift rate of 1.1mm/a, indicating different uplift between the northwest and southeast segments.  相似文献   

14.
基于重复微震的小江断裂带深部滑动速率研究   总被引:1,自引:3,他引:1       下载免费PDF全文
利用云南数字地震台网1999~2011年的波形资料,通过辨识源于同一位置破裂的重复微震来估算小江断裂带不同段落、不同深度的断层滑动速率.针对研究区台站分布稀疏的客观情况,应用了在子采样条件下基于S-P相对到时差来约束地震相对位置的方法,在小江断裂带识别出29组重复微震,其复发间隔存在差异变化.重复微震的时空分布初步分析表明:准周期的重复微震在空间上相对独立,远离其它重复微震和背景地震; 在重复微震集中分布的区域,位置相近的重复微震可能会相互作用而影响其复发间隔;在背景地震活跃阶段,相邻背景地震发生引起的应力变化可能缩短重复微震的复发间隔.利用重复微震的地震矩和重复间隔,估算出小江断裂带孕震深处3~12 km的滑动速率为1.6~10.1 mm·a-1,显示不同破裂段的深部滑动速率存在明显差异.  相似文献   

15.
山西峨嵋台地北缘断裂是汾渭断陷带内临汾-侯马盆地与峨嵋台地隆起之间的边界断裂,对临汾-侯马盆地内的侯马次级盆地具有控制作用。该断裂自西向东分为西、中、东3段,西段为早中更新世活动,中段为全新世活动,东段为晚更新世活动。在断裂中段的任庄村和金沙村附近开挖了两个探槽,通过对探槽所揭露的古地震事件的年代学分析,结合前人研究结果,认为峨嵋台地北缘断裂全新世发生过A1及A2两次古地震事件,年代分别为466a BC、约4.6ka BP。事件A1即史料记载的466a BC晋空桐地震,震级可能达71/2级。  相似文献   

16.
The Anninghe fault is one of the significant earthquake-generating fault zones in the Southwest China. Local his-torical record shows that a M≥7 strong earthquake occurred in the year of 1536. On the basis of the detailed air-photographic interpretation and field investigation, we have acquired the following knowledge: 1 The average sinistral strike-slip rate since the Late Pleistocene is about 3~7 mm/a; 2 There is important reverse faulting along the fault zone besides the main left-lateral strike-slip motion, and the shortening rate across the Anninghe fault zone due to the reverse faulting is about 1.7~4.0 mm/a. If the Xianshuihe fault zone is simply partitioned into the Anninghe and Daliangshan faults, we can also get a slip rate of 3~7 mm/a along the Daliangshan fault zone, which is the same as that on the Anninghe fault zone. Moreover, on the basis of our field investigation and the latest knowledge concerning the active tectonics of Tibetan crust, we create a dynamic model for the Anninghe fault zone.  相似文献   

17.
Abstract Drilling was carried out to penetrate the Nojima Fault where the surface rupture occurred associated with the 1995 Hyogo-ken Nanbu earthquake. Two 500 m boreholes were successfully drilled through the fault zone at a depth of 389.4 m. The drilling data show that the relative uplift of the south-east side of the Nojima Fault (south-west segment) was approximately 230 m. The Nojima branch fault, which branches from the Nojima Fault, is inferred to extend to the Asano Fault. From the structural contour map of basal unconformity of the Kobe Group, the vertical component of displacement of the Nojima branch–Asano Fault is estimated to be 260–310 m. Because the vertical component of displacement on the Nojima Fault of the north-east segment is a total of those of the Nojima Fault of the south-west segment and of the Nojima branch–Asano Fault, it is estimated to total to 490–540 m. From this, the average vertical component of the slip rate on the Nojima Fault is estimated to be 0.4–0.45 m/103 years for the past 1.2 million years.  相似文献   

18.
Introduction The Taigu fault is located on the eastern boundary of the Jinzhong basin in the Shanxi fault depression system, which is one of the 12 major active basin boundary faults, and is also less studied among them. The reason for this is, firstly, the Jinzhong basin has no historical earth-quakes with M 7, while the two basins linked together in the northern and southern sides, the Linfen and Xinding basins all have had historical earthquakes with M 7; secondly, because the Jiaochen…  相似文献   

19.
We examined the whole strong earthquake recurrence behaviors of two fault zones along the Kefallinia Transform, Ionian Sea, Greece, using seismological data and statistical methods. Our data include 29 events with %M%>5^5 for the period 1636~2003. We found different recurrence behaviors for the Kefallinia Fault Zone (clustering and time-predictable recurrence behaviors) and the Lefkada Fault Zone (near random and non-slip-predictable or non-time-predictable recurrence nature). The different modes may be attributed to: (a) segment interaction along-strike (Kefallinia) by static triggering and (b) the influence of fault systems to the north and east on the recurrence on Lefkada. Within the active periods, earthquake recurrence intervals are distributed in a more dispersed fashion, and can be fitted well by a Weibull distribution. In contrast, the distribution of the quiet periods is relatively less dispersed and difficult to describe by suitable probability functions.  相似文献   

20.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8. Foundation item: Chinese Joint Seismological Science Foundation (201017). Contribution No. 2003A004, Institute of Crust Dynamics, China Earthquake Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号