首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
P. Rochette 《地学学报》1997,9(4):188-191
Intrinsic magnetic fields, corresponding to virtual axial dipole moments of the order of 1020 Am2, have recently been evidenced for the Jovian satellites Io and Ganymede. By reviewing the rock magnetic and palaeomagnetic properties together with the history of Io, the hypothesis of a moment due to induced or remanent magnetization of crustal rocks acquired within the ambient Jovian field is clearly eliminated. This demonstration is all the more valid for Ganymede, which experiences a much lower Jovian field. The demonstration of a present dynamo action for these Jovian moons, possibly sustained by Jupiter through tidal heating and background magnetic field, may be an actualistic model for the early lunar history. The hypothesis of a lunar dynamo, active at 3–4 Ga, seems to be strongly supported by this analogy.  相似文献   

2.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

3.
Jupiter’s and Saturn’s regular satellites, which posses much ice, are currently thought to have been formed during the early evolution of the Solar System in circumplanetary protosatellite disks. Two of Saturn’s regular satellites—Titan and Enceladus—were experimentally proved to contain, along with water, other volatile components: molecular nitrogen, and methane (which are the major components of Titan’s atmosphere) and various nitrogen and carbon compounds in water plumes of Enceladus. The protomaterial of these rocky–icy satellites was formed in the outer regions of the gas–dust circumsolar nebula, and its closest analogue currently accessible to study is cometary material. The paper presents a review of experimental data on the chemical and isotopic composition of cometary material as possible sources of volatile components on Titan and Enceladus and model evaluations of temperatures in the circumsolar gas–dust protoplanetary disk and Jupiter’s and Saturn’s protosatellite disks during various evolutionary episodes of the solar system. The PT parameters of the origin of the protomaterial of Jupiter’s and Saturn’s regular satellites were proved to have been remarkably different, and hence, the material of Europa, a Jupiter’s regular satellite, cannot contain any volatile components other than water, in contrast to Titan and Enceladus. This conclusion is supported by experimental data. Cometary material is likely genetically related to the material of Saturn’s regular satellites Titan and Enceladus. The paper presents results of thermodynamic simulation of the evolution of the chemical and phase composition of Saturn’s satellites and suggests a model for the origin of Titan’s nitrogen–methane atmosphere.  相似文献   

4.
Northwest Africa (NWA) 12379 is a new metal-rich chondrite with unique characteristics distinguishing it from all previously described meteorites. It contains high Fe,Ni-metal content (∼ 70 vol.%) and completely lacks interchondrule matrix; these characteristics are typical only for metal-rich carbonaceous (CH and CB) and G chondrites. However, chondrule sizes (60 to 1200 μm; mean = 370 μm), their predominantly porphyritic textures, nearly equilibrated chemical compositions of chondrule olivines (Fa18.1–28.3, average Fa24.9±3.2, PMD = 12.8; Cr2O3 = 0.03 ± 0.02 wt.%; FeO/MnO = 53.2 ± 6.5 (wt.-ratio); n = 28), less equilibrated compositions of low-Ca pyroxenes (Fs3.2–18.7Wo0.2–4.5; average Fs14.7±3.7Wo1.4±1.3; n = 20), oxygen-isotope compositions of chondrule olivine phenocrysts (Δ17O ∼ 0.2–1.4‰, average ∼ 0.8‰), and the presence of coarse-grained Ti-bearing chromite, Cl-apatite, and merrillite, all indicate affinity of NWA 12379 to unequilibrated (type 3.8) ordinary chondrites (OCs). Like most OCs, NWA 12379 experienced fluid-assisted thermal metamorphism that resulted in formation of secondary ferroan olivine (Fa27) that replaces low-Ca pyroxene grains in chondrules and in inclusions in Fe,Ni-metal grains. Δ17O of the ferroan olivine (∼ 4‰) is similar to those of aqueously-formed fayalite in type 3 OCs, but its δ18O is significantly higher (15–19‰, average = 17‰ vs. 3―12‰, average = 8‰, respectively). We suggest classifying NWA 12379 as the ungrouped metal-rich chondrite with affinities of its non-metal fraction to unequilibrated OCs and speculate that it may have formed by a collision between an OC-like body and a metal-rich body and subsequently experienced fluid-assisted thermal metamorphism. Trace siderophile element abundances and isotopic compositions (e.g., Mo, Ni, Fe) of the NWA 12379 metal could help to constrain its origin.  相似文献   

5.
Primitive CO3.00–3.1 chondrites contain ∼2-8 vol.% magnetite, minor troilite and accessory carbide and chromite; some CO3.1 chondrites have fayalite-rich veins, chondrule rims and euhedral matrix grains. All CO3.00–3.1 chondrites contain little metallic Fe-Ni (0.4–1.2 vol.%). CO3.2–3.7 chondrites contain 1–5 vol.% metallic Fe-Ni, minor troilite, accessory chromite and 0-0.6 vol.% magnetite. Magnetite is formed in primitive CO3 chondrites from metallic Fe by parent-body aqueous alteration, resulting in decreased metallic Fe-Ni and an increase in the proportion of high-Ni metal grains. The paucity or absence of magnetite in CO chondrites of subtype ≥3.2 suggests that magnetite is destroyed during thermal metamorphism; thermochemical calculations from the literature suggest that magnetite is reduced by H2 and reacts with SiO2 to form fayalite and secondary kamacite. Analogous processes of magnetite formation and destruction occur in other chondrite groups: (1) Primitive type-3 OC have opaque assemblages containing magnetite, carbide, Ni-rich metal and Ni-rich sulfide, but OC of subtype >3.4 contain little or no magnetite. (2) Primitive R3 chondrites and clasts (subtype ≲3.5) contain up to 6 vol.% magnetite, but most R chondrites contain no magnetite. The principal exception is magnetite with 9–20 wt.% Cr2O3 in a few R4-6 chondrites. Magnetite grains with high Cr2O3 behave like chromite and are more stable under reducing conditions. (3) CK chondrites average ∼4 vol.% magnetite with substantial Cr2O3 (up to ∼15 wt.%); these magnetite grains also are stable against reduction during metamorphism. (4) The modal abundance of magnetite decreases with metamorphic grade in CV3 chondrites. (5) Chromite occurs instead of magnetite in those rare samples classified CR6, CR7 and CV7.  相似文献   

6.
Contents and δ34S values of several S compounds, enumerations of S-reducing bacteria (SRB) and Fe-reducing bacteria (IRB), and Fe, Pb and In concentrations were determined for 210Pb-dated sediment cores from two lakes in Quebec, Canada. Both lakes are located approximately 70 km downwind of the Horne smelter and refinery in Rouyn-Noranda. Increases in Fe, Pb and In concentrations and a decrease in the δ34S values of total S in both lake sediment cores coincide with the start-up of the smelter in 1927. The shift towards more negative δ34S values was primarily caused by an increase in the extent of S isotope fractionation during bacterial (dissimilatory) SO4 reduction due to SO4 loading of the lakes after smelting began. Consequently, an enhanced accumulation of 32S-enriched reduced inorganic S compounds is evident in the sediments. δ34S values of organic S in the sediments decreased only slightly due to the smelter emissions between 1930 and 1980. Hence, due to the sulfide depositing mechanisms, S isotope ratios constitute a useful tracer recording the onset of S pollution in sediments of the two previously SO4-limited lakes investigated. In contrast, total S concentrations alone are not reliable indicators for anthropogenic S loading in lake sediment records.  相似文献   

7.
Fe and Cu skarn deposits constitute the most important skarn type worldwide, whereas the controlling factors that lead to the difference in metal associations remain not well known. The Fe- and Cu-hosting Tieshan complex in the Edong district provides a good opportunity for comparative study on the genetic differences between Fe and Cu skarn deposits. In this study, integrated studies of geochronology, geochemistry and Sr-Nd-Hf isotope compositions were conducted on the complex. LA-ICP-MS zircon U-Pb dating results show that the Tieshan complex was emplaced in the time interval of 135 ± 3 to 144 ± 1 Ma. Multiphase rocks from the complex can be broadly subdivided into two suites. The Fe-Cu-related suite, which consists of diopside diorite, quartz diorite, quartz diorite porphyrite and porphyritic granodiorite, possesses low SiO2 (53.5–67.1 wt.%), K2O (2.44–3.53 wt.%) and Rb (45−83 ppm) contents, but high Sr (1132−2684 ppm), Ba (1073−1656 ppm) contents and negligible Eu anomalies, with very high Sr/Y (>90) ratios, similar to typical high Ba-Sr granitoids. The rock suite has initial 87Sr/86Sr values of 0.70648 to 0.70737, εNd(t) values of −12.3 to −8.2 and εHf(t) values of −16 to −7, comparable to values of the Early Cretaceous mafic rocks in the Edong district and adjacent areas, indicating that it might be largely derived from an enriched lithospheric mantle source, along with minor involvement of lower-crustal components. By contrast, the Fe-related suite, which is composed of quartz diorite, quartz diorite porphyrite and granodiorite porphyry, is characterized by relatively high SiO2 (63.0–71.0 wt.%) and K2O contents (3.36–5.53 wt.%), and a wide range of Sr (158−1135 ppm), Ba (762−1366 ppm) contents and Sr/Y (11–99) ratios. In combination with the presence of abundant inherited zircon grains, the lower εNd(t) (−12.4 to −9.3) and εHf(t) (−25 to −15) values indicate a greater degree of lower-crustal contribution for the Fe-related suite. In addition, the calculated zircon Ce (Ce/Ce* and Ce4+/Ce3+) and Eu (Eu/Eu*) anomalies suggest that the Fe-Cu-related suite has much higher oxygen fugacity (fO2) than the Fe-related suite. This study highlights fO2 and fractionation degree of magma as useful indicators for differentiating Fe and Cu skarn mineralization.  相似文献   

8.
The carbonaceous chondrites are intriguing and unique in the sense that they are the only rocks that provide pristine records of the early solar nebular processes. We report here results of a detailed mineralogical, chemical, amino acid and isotopic studies of a recently observed fall at Mukundpura, near Jaipur in Rajasthan, India. Abundance of olivines in this meteorite is low and of serpentine minerals is high. FeO/SiO_2 = 1.05 in its Poorly Characterized Phases(PCP) is similar to that observed in other CM2.0 chondrites. The water content of ~9.8 wt.% is similar to that found in many other CM chondrites.Microscopic examination of matrix shows that its terrestrial weathering grade is WO but aqueous parent body alteration is high, as reflected in low abundance of identifiable chondrules and abundant remnants of chondrules(~7%). Thus, most of the chondrules formed initially have been significantly altered or dissolved by aqueous alterations on their parent bodies. The measured bulk carbon(2.3%) and nitrogen content and their isotopic(δ13C =-5.5‰, δ15N = 23.6%0) composition is consistent with CM2.0 classification probably bordering CM1. Several amino acids such as Alanine, Serine, Proline, Valine, Threonine,Leucine, Isoleucine, Asparagine and Histamine are present. Tyrosine and Tryptophan may occur in trace amounts which could not be precisely determined. All these data show that Mukundpura chondrite lies at the boundary of CM2.0 and CM1 type carbonaceous chondrites making it one of the most primitive chondrites.  相似文献   

9.
The relationship between pyritic sulfur content (Spyr) and organic carbon content (Corg) of shales analyzed from the New Albany Group depends upon Corg. For samples of <6 wt.% Corg, Spyt, and Corg are strongly correlated (r = 0.85). For Corg-“rich” shales (>6 wt.%), no Spty-Corg, correlation is apparent. The degree of Fe pyritization (DOP) shows similar relationships to Corg. These C-S-Fe relationships suggest that pyrite formation was limited by the availability of metabolizable organic carbon in samples where Corg < 6 wt.% and by the availability of reactive Fe for samples where Corg > 6 wt.%. Apparent sulfur isotope fractionations relative to contemporaneous seawater sulfate (Δ34S) for pyrite formation average −40% for non-calcareous shales and −25%. for calcareous shales. Δ34S values become smaller with increasing Corg, Spyt, and DOP for all Corg-“poar” (<6 wt%) and some Corg-“nch” (<6 wt.%) shales. These trends suggest that pyrite formation occurred in a closed system or that instantaneous bacterial fractionation for sulfate reduction decreased in magnitude with increasing organic carbon content. The isotopic trends observed in the New Albany Group are not necessarily representative of other shales having a comparable range of organic carbon content, e.g. Cretaceous shales and mudstones from the western interior of North America (GAUTIER, 1986). Δ34S values in the remainder of the Corg-rich New Albany Group shales are relatively large (−38 to −47%.) and independent of Corg, Spyr, and DOP, which suggests that pyrite in these shales formed mostly at or above the sediment-water interface by precipitation from an isotopically uniform reservoir of dissolved H2S.  相似文献   

10.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

11.
A new thallium-rich variety of murunskite has been found in the Palitra peralkaline pegmatite at Mount Kedykverpakhk, the Lovozero alkaline pluton, Kola Peninsula, Russia. This mineral occurs as a flattened dark bronze segregation (0.3 × 0.8 × 0.8 mm) overgrowing ussingite in a cavity. The chemical composition is as follows, wt %: 8.35 K, 24.31 Tl, 29.01 Cu, 14.58 Fe, 23.26 S, total is 99.51. The empirical formula is (K1.18Tl0.66)1.84(Cu2.53Fe1.45)3.98S4.02. According to X-ray powder diffraction data, the dimensions of the tetragonal unit cell are: a = 3.869 (1), c = 13.206 (6) Å, V = 197.7 (2) Å3. This variety is the closest to the intermediate member of the murunskite-thalcusite series. The youngest mineral complex of the Palitra Pegmatite includes four sulfides belonging to three different structure types. These sulfides also may be regarded as three topological types distinguished by the arrangement of alkali metal atoms in their structures: (1) bartonite and chlorbartonite belonging to the zero-dimensional topological type with K atoms in isolated cells, (2) pautovite pertaining to the one-dimensional type with Cs (+Rb, K, Tl) atoms making up chains in ample tunnels, and (3) murunskite belonging to the two-dimensional type with K (+Tl) atoms forming sheets. There is pronounced partitioning of K (Cs + Rb) and Tl between these sulfides: bartonite and chlorbartonite contain 9.5–9.7 wt % K and 0.2 wt % Tl; pautovite, 36.1 wt % Cs, 1.3 wt % Rb, 0.5 wt % Tl, and 0.2 wt % K; and murunskite, 8.35 wt % K and 24.31 wt % Tl.  相似文献   

12.
New geochemical data on cosmic spherules (187 major element, 76 trace element, and 10 oxygen isotope compositions) and 273 analyses from the literature were used to assess the chemical diversity observed among glass cosmic spherules with chondritic composition. Three chemical groups of glass spherules are identified: normal chondritic spherules, CAT-like spherules (where CAT refers to Ca-Al-Ti-rich spherules), and high Ca-Al spherules. The transition from normal to high Ca-Al spherules occurs through a progressive enrichment in refractory major elements (on average from 2.3 wt.% to 7.0 wt.% for CaO, 2.8 wt.% to 7.2 wt.% for Al2O3, and 0.14 wt.% to 0.31 wt.% for TiO2) and refractory trace elements (from 6.2 μg/g to 19.3 μg/g for Zr and 1.6CI-4.3CI for Rare Earth Elements-REEs) relative to moderately refractory elements (Mg, Si) and volatile elements (Rb, Na, Zn, Pb). Based on a comparison with experimental works from the literature, these chemical groups are thought to record progressive heating and evaporation during atmospheric entry. The evaporative mass losses evaluated for the high Ca-Al group (80-90%) supersede those of the CAT spherules which up to now have been considered as the most heated class of stony cosmic spherules. However, glass cosmic spherules still retain isotopic and elemental evidence of their source and precursor mineralogy. Four out of the 10 normal and high Ca-Al spherules analysed for oxygen isotopes are related to ordinary chondrites (δ18O = 13.2-17.3‰ and δ17O = 7.6-9.2‰). They are systematically enriched in Ni and Co (Ni = 24-500 μg/g) with respect to spherules related to carbonaceous chondrites (Ni < 1.2 μg/g, δ18O = 13.1-28.0‰ and δ17O = 5.1-14.0‰). REE abundances in cosmic spherules, which are not fractionated according to parent body or atmospheric entry heating, can then be used to unravel the precursor mineralogy. Spherules with flat REE pattern close to unity when normalized to CI are the most abundant in our dataset (54%) and likely derive from homogeneous, fine-grained chondritic precursors. Other REE patterns fall into no more than five categories, a surprising reproducibility in view of the mineralogical heterogeneity of chondritic lithologies at the micrometeorite scale.  相似文献   

13.
We examine a model for Mars involving bulk primordial solutions (oceans and lakes) that were relatively Mg-rich and SO4/(SO4 + Cl)-rich. Such solutions could be produced when (1) volatiles leached a planet (or portions of a planet) with an ultramafic-mafic composition in a process called “planetary leaching”; and/or by (2) “impactor leaching” where meteoritic and/or cometary impactor fragments were leached. When Mg-SO4/(SO4 + Cl)-rich solutions are concentrated, we predict that the following sequence of salts precipitates: phosphates; carbonates; gypsum; epsomite; bloedite; halite; hexahydrite; and, finally bischofite. This sequence is modified slightly if appreciable Fe-, Mg- or Na-carbonates, Fe-sulfates, Mg-phosphate, or other halide salts crystallized before the Mg-Na-sulfate salts, or if HCO3+CO3 concentrations vary due to other effects (e.g., atmosphere CO2 levels change).On Mars, the initial primordial solutions would have been relatively salt-rich and water-poor; therefore, the surface solutions formed Mg-Na-SO4-Cl salts (cements, veneers, and dust) and subsurface solutions or ice (solid H2O). This model is supported by the compositions of cements in the regolith on Mars (high Mg, Na, S, and Cl) and geochemical and petrographic evidence that the salts precipitated in the predicted sequence. We suggest that the partial pressure of oxygen was above the hematite-magnetite buffer where Fe3+-(hydrous)-oxides are stable and SO42- or HSO4- are solutes in any solution. Such a partial pressure of oxygen may have been attained via H2-loss.In contrast, on the Galilean satellites (Europa, Ganymede, and Callisto) surface solutions were relatively water-rich and formed ice, Mg-SO4-rich salts, and solutions, thereby producing surface features dependent on the initial water content and the crystallization path. Unlike the Na-Cl-rich oceans on Earth, the solutions of these planetary bodies likely did not change greatly from their bulk primordial Mg-rich, SO4/(SO4 + Cl)-rich compositions; hence they did not attain compositions similar to modern seawater.  相似文献   

14.
Charles Maurice  Don Francis 《Lithos》2010,114(1-2):95-108
Paleoproterozoic mafic dyke swarms (2.5–2.0 Ga) of the Ungava Peninsula can be divided in three chemical groups. The main group has a wide range of Fe (10–18 wt.% Fe2O3) and Ti (0.8–2.0 wt.% TiO2) contents, and the most magnesian samples have compositions consistent with melting of a fertile lherzolitic mantle at ~ 1.5 GPa. Dykes of a low-LREE (light rare earth element) subgroup (La/Yb ≤ 4) display decreasing Zr/Nb with increasing La/Yb ratios and positive εNd2.0 Ga values (+ 3.9 to + 0.2) that trend from primitive mantle towards the composition of Paleoproterozoic alkaline rocks. In contrast, dykes of a high-LREE subgroup (La/Yb ≥4) display increasing Zr/Nb ratios and negative εNd2.0 Ga values (? 2.3 to ? 6.4) that trend towards the composition of Archean crust. A low Fe–Ti group has low Fe (< 11 wt.% Fe2O3), Ti (< 0.8 wt.% TiO2), high field strength elements (HFSE; < 6 ppm Nb) and heavy rare earth elements (HREE; < 2 ppm Yb) contents, but are enriched in large ion lithophile elements (LILE; K/Ti = 0.7–3) and LREE (La/Yb > 4). These dykes are interpreted as melts of a depleted harzburgitic mantle that has experienced metasomatic enrichment. A positive correlation of Zr/Nb ratio and La/Yb ratio, negative εNd2.0 Ga values (? 14 to ? 6), and the presence of inherited Archean zircons further suggest the incorporation of a crustal component. A high Fe–Ti group has high Fe (> 14 wt.% Fe2O3) and Ti (> 1.4 wt.% TiO2) contents, along with higher Na contents relative to the main group dykes. Dykes of a high-Al subgroup (> 12 wt.% Al2O3) share Fe contents, εNd2.0 Ga values (? 2.3 to ? 3.4), La/Yb and Th/Nb ratios with Archean ferropicrites, and may represent evolved ferropicrite melts. A low-Al subgroup (< 12 wt.% Al2O3) has relatively lower Yb contents (< 2 ppm) and fractionated HREE patterns that indicate the presence of garnet in their melting residue. A comparison with ~ 5 GPa experimentally-derived melts suggests that these dykes may be derived from garnet-bearing pyroxenite or peridotite. The εNd2.0 Ga values (? 0.3 to ? 2.0) of these dykes lie between the compositions of Archean granitoids and Paleoproterozoic alkaline rocks, signifying their petrogenesis involved both crustal and mantle components.Paleoproterozoic dykes containing a crustal component occur within, or close to, an isotopically enriched Archean terrane (TDM 4.3–3.1 Ga), whereas dykes without this component occur in an isotopically juvenile terrane (TDM < 3.1 Ga). The lack of a crustal component and the positive εNd2.0 Ga values of dykes intruding the latter suggest that the crust they intruded was either too cold to be assimilated, or that its lower crust and/or lithosphere were Paleoproterozoic in age. In contrast, the ubiquitous presence of a crustal component and the diversity of mantle sources for dykes intruding the enriched terrane (lherzolite, harzburgite, pyroxenite) suggest a warmer crust with underlying heterogeneous lithospheric mantle.  相似文献   

15.
Melt and fluid inclusions have been studied in olivine phenocrysts (Fo 81–79) from trachybasalts of the Southern Baikal volcanic area, Dzhida field. The melt inclusions were homogenized, quenched, and analyzed on an electron and ion microprobe. The study of homogenized glasses of nine inclusions showed that basaltic melts (SiO2 = 47.1–50.3 wt %, MgO = 5.0–7.7 wt %, CaO = 7.1–11.1 wt %) have high contents of Al2O3 (17.1–19.6 wt %), Na2O (4.1–6.2 wt %), K2O (2.2–3.3 wt %), and P2O5 (0.6–1.1 wt %). The volatile contents are low (in wt %): 0.24–0.31 H2O, 0.08 F, 0.03 Cl, and 0.02 S. Primary fluid inclusions in olivines from four trachybasalt samples contain high-density CO2 (0.73–0.87 g/cm3), indicating a CO2 fluid pressure of 4.3–6.6 kbar at 1200–1300°C and olivine crystallization depths of 16–24 km. Ion microprobe analyses of 20 glasses from melt inclusions for trace elements showed that the magmas of the Baikal rift were enriched in incompatible elements, thus differing from oceanic rift basalts and resembling oceanic island basalts. A comparison of our data on melt and fluid inclusions in olivine from trachybasalts of the Dzhida field with preexisting data on the Eastern Tuva volcanic highland in the Southern Baikal volcanic area showed that they had similar contents of volatiles, major, and trace elements.  相似文献   

16.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   

17.
This study highlights the distribution of hydraulic conductivity (K) in the regional aquiferous Ajali Formation of SE-Nigeria on one hand and assesses the possible influences of textural and geochemical characteristics on the hydraulic conductivity on the other hand. The investigation approach involved field sampling and collection of 12 sandstone samples from different outcrop locations, followed by laboratory studies such as grain-size analysis (GSA), constant head permeameter test and geochemical analysis of major and trace elements using X-ray fluorescence method. GSA and textural studies show that the sandstones range from fine to medium sands, constituting about <75–99% sand fraction, with graphic mean grain size of 0.23–0.53 mm. Other parameters such as coefficient of uniformity (Cu) range from 1.58 to 5.25 (av. 2.75), while standard deviation (sorting) values of 0.56Ø–1.24Ø imply moderately well sorted materials. In addition, the order of the estimated K values is Kpermeameter>KBeyer>KHazen>KKozeny-Carmen>KFair-Hatch with average values of 1.4×10?3, 4.4×10?4, 3.8×10?4, 2.2×10?4 and 8.1×10?5m/s, respectively. These values fall within the range of 10?5 and 10?3m/s for fine to medium sands. However, multivariate factor analysis of the data revealed significant positive dependence of the empirically determined K values on graphic mean grain size and percentage sand content and much less dependence on sorting and total porosity. Geochemical profiles of the fresh samples are dominated by quartz with corresponding SiO2 content of 76.1–98.2% (av. 89.7%) while other major oxides are generally below 1.0wt.% in the fresh samples. However, the ferruginized samples exhibited elevated concentrations of Al2O3 (3.50–11.60wt.%) and Fe2O3 (1.80–3.60wt.%), which are clear indications of weathering/ferruginization processes with attendant trace metal release/enrichment (2.5mg/l Cu, 7.5mg/l Pb, 6.5mg/l Zn, 3.9mg/l Ni and 19.6mg/l Cr) call for concern in respect of the chemical quality of the groundwater system. The associated groundwater is generally soft, slightly acidic, and with low dissolved solids (EC=14–134μs/cm) dominated by silica; implying water from clean sandy aquifer devoid of labile and weatherable minerals. Nonetheless, most of the metals (with exception of Si, Fe and Mn) exhibited higher degree of mobility (2–12 folds), which can be attributed to reduction of Fe-/Mn-oxyhydroxides as sinks/hosts for trace metals. Consequently, infiltration-induced geochemical reactions (redox, ferruginization and leaching processes) signify potential environmental impact in terms of groundwater quality as well as borehole/aquifer management, especially under humid tropical environment of the study area.  相似文献   

18.
Mineralogical and petrological-geochemical features of the Mesoproterozoic (1.23–1.20 Ga) alkaline ultrabasic rocks from the Kostomuksha-Taloveis (Russia) and Lentiira-Kuhmo (Finland) areas, West Karelia, have been studied. In terms of mineralogy and geochemistry, these rocks more resemble group II kimberlites of South Africa (orangeites) than olivine lamproites or ultramafic lamprophyres. On the basis of phenocryst composition, the studied orangeites are divided into three types: Cpx-Phl-Ol, Phl-Ol, and Phl-Carb orangeites. The Cpx-Phl-Ol orangeites from the Kostomuksha cluster clearly differ from analogous rocks from the Lentiira cluster. The composition of Phl-Ol orangeites is indicative of derivation by intense fractional crystallization; Cpx-Phl-Ol orangeites from the Kostomuksha area display evidence of intense lithosphere assimilation. The Phl-Carb orangeites from the Taloveis cluster and Cpx-Ol orangeites from the Lentiira cluster most closely approximate primary melts. The Kostomuksha orangeites are characterized by lowto moderate-radiogenic (87Sr/86Sr)1220 ratio varying from 0.7038 to 0.7067. The Phl-Carb orangeites of Taloveis have less radiogenic Nd isotope composition (?Nd from ?11 to ?12) as compared to the Cpx-Phl-Ol and Phl-Ol orangeites of Kostomuksha (?Nd from ?6.9 to ?9.4). The Cpx-Phl-Ol orangeites from Lentiira contain fresh olivine. By morphology and composition, there are three olivine generations: (1) large rounded, usually zoned crystals with Fo 92 core, 0.33–0.37 wt % NiO, and 0.03–0.04 wt% CaO, which are interpreted as xenocrysts from depleted peridotites; (2) anhedral rounded zoned olivines of intermediate size with Fo 82–83 cores, 0.03–0.05 wt % CaO, 0.12–0.17 wt % NiO, and up to 0.40 wt % MnO. These olivines were entrapped by orangeite melt and presumably represent a cumulate of basaltic melts or were derived from metasomatized peridotites; (3) fine euhedral olivines and xenocryst rims corresponding to Fo 88–89 with 0.10–0.42 wt % CaO, 0.14–0.35 wt % NiO, and up to 0.07–0.21 wt % MnO; their origin was presumably related to the crystallization from kimberlite melt. The calculation of $f_{O_2 }$ of kimberlite melt during crystallization of perovskites using Nb-Fe perovskite oxyba-rometer showed that Cpx-Phl-Ol orangeites of Kostomuksha and orangeites of Lentiira crystallized at similar oxygen fugacities corresponding to ΔNNO from ?3.3 to ?1.1 and from ?3.3 to ?0.9, respectively. The Sm-Nd and Rb-Sr isotope study provided evidence for the contribution from ancient enriched source in the genesis of the orangeites. It was proposed that their mantle source was formed in two stages: (1) metasomatic reworking of previously depleted lithospheric source at the Karelian Craton base during Paleoproterozoic orogenic events 2.1–2.0 Ga ago; (2) extension-related generation of orangeite melts 1.27–1.20 Ga ago.  相似文献   

19.
Pallasites are highly differentiated meteorites and provide a unique sample from the deep interiors of solar system parent bodies. They contain evidence of the former existence of one or more residual melts. Olivine is a major phase. Its primary shape is rounded; the angular crystals in many pallasites are secondary. Tubular inclusions are widespread. They perhaps are the residence of CO2, released during laboratory heating experiments. Phosphoran olivine, a new variety of olivine containing 4–5 wt% P2O5, occurs in a few pallasites. Its Fe/Mg ratio is apparently independent of the host olivine composition.Pyroxene (not previously described from pallasites) occurs in symplectic intergrowths in seven meteorites. Compositionally, it lies in the gap between pyroxenes in chondrites and most irons. There are two groups: Fs11.6 ± 0.2 and Fs16.7 ± 0.2 The pyroxene contains exceptionally low Ca (< 0.1–0.2 wt%) and there is an indication of an inverse relation between Fe and Ca.Modal analyses and density measurements were made on all available specimens and bulk compositions were calculated. The ‘average’ pallasite contains 65 vol. % olivine and 50.5 wt % total Fe. Many of the densities of pallasites cluster around that calculated for close-packed olivine.Pallasites are exotic cumulates. Their textures resemble terrestrial cumulates, as does the presence of olivine and chromite. The metal texture resembles a solidified intercumulus liquid. Those pallasites containing olivine in excess of close-packing were subjected to adcumulus growth, thereby also explaining the widespread mutual borders.There is abundant evidence of deformation. For olivines this includes their fragmental shape and kink banding. Troilite formed a eutectic-like melt with kamacite: pieces of spalled olivine and schreibersite were injected into and captured by this melt. Troilite polycrystallinity resulted from the deformation. This deformation occurred while the pallasites were still deeply buried, resulting in incipient spheroidization of olivine fragments, including the formation of elongate, rounded crystals. A later, lower temperature deformation disrupted plessite.Pallasites formed in multiple parent bodies by processes that recurred in several places within the solar system, as shown by the mineralogical and textural similarities between pallasites that differ in their isotopic and trace element compositions. Type IIIB irons still seem the most likely associated meteorites.Two new pallasites, Dora and Rawlinna, are described briefly.  相似文献   

20.
Intrinsic oxygen-fugacity (fO2) measurements were made on five ordinary chondrites, a carbonaceous chondrite, an enstatite chondrite, a pallasite, and a tektite. Results are of the form of linear log fO2 ? 1T plots. Except for the enstatite chondrite, measured results agree well with calculated estimates by others.The tektite produced fO2 values well below the range measured for terrestrial and lunar rocks. The lowpressure atmospheric regime that is reported to follow large terrestrial explosions, coupled with a very high temperature, could produce glass with fO2 in the range measured.The meteorite Salta (pallasite) has low fO2 and lies close to Hvittis (E6). Unlike the other samples, results for Salta do not parallel the iron-wüstite buffer, but are close to the fayalite-quartz-iron buffer in slope.Minor reduction by graphite appears to have taken place during metamorphism of ordinary chondrites. fO2 values of unequilibrated chondrites show large scatter during early heating suggesting that the constituent phases were exposed to a range of fO2 conditions. The samples equilibrated with respect to fO2 in relatively short time on heating. Equilibration with respect to fO2 in ordinary chondrites takes place between grades 3 and 4 of metamorphism. Application of P ? T ? fO2 relations in the system C-CO-CO2 indicates that the ordinary chondrites were metamorphosed at pressures of 3–20 bars, as it appears that they lay on the graphite surface.A steep positive thermal gradient in a meteorite parent body lying at the graphite surface will produce thin reduced exterior, an oxidized near-surface layer, and an interior that is increasingly reduced with depth; a shallow thermal gradient will produce the reverse. A body heated by accretion on the outside will have a reduced exterior and oxidized interior. Meteorites from the same parent body clearly are not required to have similar redox states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号