首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theory of partially elastic collisions is constructed for frictionless planetesimals in an arbitrary gravitational field. The non-zero size of the particles and the influence of gravitational encounters are included. The equations for a self-gravitating rotationally symmetric disk or ring are written in an explicit form. Such systems turn out to be bimodal in the same sense as the Keplerian systems, i.e. there are two kinds of stable configurations which may co-exist in adjacent regions without disturbing the mechanical equilibrium. The transitions from one mode to another can also occur at essentially smaller values of the optical thickness than those previously found for Saturn's rings: in one of the numerically studied cases the transition from the dense to the rarefied mode occurred at the optical thickness 3×10?5 while the reversed process corresponded to a higher value, 10?2. The difference illustrates the dependence of the transition on its direction. The characteristic S shape which several authors have found for the relation between the viscosity and the optical thickness in Keplerian systems becomes more complicated if the contribution of self-gravitation increases. In some cases the stable solutions also imply a certain minimum value of the optical thickness.  相似文献   

2.
We show that particles orbiting a central body (i.e., Saturn's rings) can be assembled into one or more dense (i.e., opaque) independent rings without interparticle collisions taking place despite the inevitable particle oscillations about the ring plane. The resultant apparent bulk motion is a slow “rolling” motion of the ring, as it orbits, the individual rings describing a “helical” motion. Such rings would only evolve due to external perturbations or (slow) internal gravitational perturbations, since the particles need never collide. This picture opens up the possibility of having hollow rings, for example. Moreover, it is possible that an initially uniform disk of randomly moving particles may spontaneously separate into a series of such rings. The consequence would be a striated disk having virtually zero internal viscosity.  相似文献   

3.
Numerical simulations of 200 mutually colliding non-identical particles indicate that the equipartition of random kinetic energy is possible only in systems having a narrow distribution of particle masses. Otherwise the random energy is concentrated on heavy particles. The form of the velocity distribution versus particle mass depends also on the elastic properties of the particles, and on the relative importance of the particle size. If the coefficient of restitution is a weakly decreasing function of impact velocity, a large difference in the equilibrium velocities of largest and smallest particles is possible. On the other hand, if the elasticity drops to a low level even in the small velocity regime, the dispersion of velocities is maintained by finite size and differential rotation, and the velocities of smallest particles are, at most, slightly larger than those of the largest ones. The results of simulations are consistent with the predictions of the collisional theory of non-identical particles (Hämeen-Anttila, 1984). The application to Saturn's rings indicates that the geometric thickness of cm-sized particles is of the order of 50 m in the rarefied regions of the rings. Without the gravitational encounters a thickness of about 30 m is derived. These estimations are made by using the latest measurements (Bridges et al., 1984) for the restitution coefficient of icy particles.  相似文献   

4.
Gravitational accretion in the rings of Saturn is studied with local N-body simulations, taking into account the dissipative impacts and gravitational forces between particles. Common estimates of accretion assume that gravitational sticking takes place beyond a certain distance (Roche distance) where the self-gravity between a pair of ring particles exceeds the disrupting tidal force of the central object, the exact value of this distance depending on the ring particles' internal density. However, the actual physical situation in the rings is more complicated, the growth and stability of the particle groups being affected also by the elasticity and friction in particle impacts, both directly via sticking probabilities and indirectly via velocity dispersion, as well as by the shape, rotational state and the internal packing density of the forming particle groups. These factors are most conveniently taken into account via N-body simulations. In our standard simulation case of identical 1 m particles with internal density of solid ice, ρ=900 kg m−3, following the Bridges et al., 1984 elasticity law, we find accretion beyond a=137,000-146,000 km, the smaller value referring to a distance where transient aggregates are first obtained, and the larger value to the distance where stable aggregates eventually form in every experiment lasting 50 orbital periods. Practically the same result is obtained for a constant coefficient of restitution εn=0.5. In terms of rp parameter, the sum of particle radii normalized by their mutual Hill radius, the above limit for perfect accretion corresponds to rp<0.84. Increased dissipation (εn=0.1), or inclusion of friction (tangential force 10% of normal force) shifts the accretion region inward by about 5000 km. Accretion is also more efficient in the case of size distribution: with a q=3 power law extending over a mass range of 1000, accretion shifts inward by almost 10,000 km. The aggregates forming in simulations via gradual accumulation of particles are synchronously rotating.  相似文献   

5.
The recent observation of the absorption of radiation belts in the vicinity of Saturn's bright rings and historical observations of the ring system make the following related results apparent:
  • - The gaps in the rings are caused by the presence of at least 6 small, extremely dense and probably electrically charged ‘sweeper’ moons which effectively sweep the ring matter clean from the gaps. This is known due to the fading of the inner ring edges whereas the outer edges are well defined. Their orbital periods will differ from the expected Keplerian periods if the moons and Saturn do possess electric fields.
  • - Absorption of radiation belts near the rings (of Jupiter also) implies that the ring particles themselves are not absorbing the radiation but the small moons are. This is consistent with the observed radiation belt absorption near the outer Saturnian moons.
  • - If electric fields of the sweeper moons cause the ring edge fading as observed (and not simply gravitational), then Saturn itself must maintain an electric field in its vicinity by way of a sizeable proton wind to affect the uneven ring edge fading and will be surrounded by an H+ cloud at least to approximately the A-ring. this is consistent with the detection of an H+ cloud surrounding Saturn (Weiseret al., 1977, p. 755). The other possibility is that these moons are extremely dense and have very large internal magnetic fields.
  • - Because of their location, these moons must be captured and if very dense as believed, may be core remnants of a nova.
  •   相似文献   

    6.
    C.K. Goertz  G. Morfill 《Icarus》1983,53(2):219-229
    We suggest that spokes consist of charged micron-sized dust particles elevated from the rings by radially moving dense plasma columns created by meteor impacts on the ring. Dense plasma causes electrostatic wall-sheaths at the ring and charging of the ring with electric fields strong enough to overcome the gravitational force on small dust particles. Under “ordinary” conditions only very few dust particles will be elevated as the probability of a dust particle having at least one excess electronic charge is very low. Dense plasma raises this probability significantly. The radial motion of the plasma column is due to an azimuthal polarization electric field built up by the relative motion between the corotating plasma and the negatively charged dust particles which move with a Keplerian speed.  相似文献   

    7.
    The viscosity (the angular momentum flux) in the disk of mutually gravitating particles of Saturn's rings is investigated. The hydrodynamic theory of the gravitational Jeans-type instability of small gravity perturbations (e.g., those produced by spontaneous disturbances) of the disk is developed. It is suggested that in such a system the hydrodynamic turbulence may arise as a result of the instability. The turbulence is related to stochastic motions of “fluid” elements. The objective of this paper is to show that in the Jeans-unstable Saturnian ring disk the turbulent viscosity may exceed the ordinary microscopic viscosity substantially. The main result of local N-body simulations of planetary rings by Daisaka et al. (2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296-312) is explained: in the presence of the gravitationally unstable density waves, the effective turbulent viscosity νeff is given as νeff=CG2Σ2/Ω3, where G, Σ, and Ω are the gravitational constant, the surface mass density of a ring, and the angular velocity, respectively, and the nondimensional correction factor C≈10. We argue that both Saturn's main rings and their irregular of the order of 100 m or even less fine-scale structure (being recurrently created and destroyed on the time scale of an order of Keplerian period ) are not likely much younger than the solar system.  相似文献   

    8.
    The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.  相似文献   

    9.
    We consider the system of planetary rings with shepherds as a restricted three or four-body problem, neglecting interactions between ring particles. We show that the generic occurrence of rings for the case of rotating short-range potentials can be extended to the case of gravitational potentials. The consecutive collision periodic orbits created by saddle-center bifurcations are of central importance.  相似文献   

    10.
    André Brahic 《Icarus》1975,25(3):452-458
    We consider numerically a three-dimensional system of particles moving in the gravitational field of a central mass point and interacting through inelastic collisions. After a very fast flattering, the system reaches a quasiequilibrium state in which there are still collisions and the rings tend to a finite thickness of a few times the mean size of the particles.  相似文献   

    11.
    The effects of partially elastic collisions on a dense system of particles moving in Keplerian orbits are studied. As in the case of a low-density system (Hämeen-Anttila, 1975), evolution leads to the formation of separate ringlets. The results reveal an anisotropic structure of matter, which may explain some peculiarities in the photometry of Saturn's rings.  相似文献   

    12.
    It is shown that the formation of Saturn's ring C can be explained by the action of solar radiation pressure on the small ring particles. If the age of the rings is 1.6×108 yr, the predicted optical thickness of ring C, as a function of the distance from the planet, can then be shown to be in agreement with the measured one. The disruption of a solid satellite as the origin of the rings is shown to be quite plausible. If, in Roche's limit, the molecular cohesion is taken into account, the disruption distance of a satellite having the mass of the rings seems to be in agreement with the average distance of the ring system.  相似文献   

    13.
    The problem of the precession of the orbital planes of Jupiter and Saturn under the influence of mutual gravitational perturbations was formulated and solved using a simple dynamical model. Using the Gauss method, the planetary orbits are modeled by material circular rings, intersecting along the diameter at a small angle α. The planet masses, semimajor axes and inclination angles of orbits correspond to the rings. What is new is that each ring has an angular momentum equal to the orbital angular momentum of the planet. Contrary to popular belief, it was proved that the orbital resonance 5: 2 does not preclude the use of the ring model. Moreover, the period of averaging of the disturbing force (T ≈ 1332 yr) proves to be appreciably greater than a conventionally used period (≈900 yr). The mutual potential energy of rings and the torque of gravitational forces between the rings were calculated. We compiled and solved the system of differential equations for the spatial motion of rings. It was established that a perturbing torque causes the precession and simultaneous rotation of the orbital planes of Jupiter and Saturn. Moreover, the opposite orbit nodes on the Laplace plane coincide and perform a secular movement in retrograde direction with the same velocity of 25.6″/yr and the period T J = T S ≈ 50687 yr. These results are close to those obtained in the general theory (25.93″/yr), which confirms the adequacy of the developed model. It was found that the vectors of the angular velocity of orbital rings move counterclockwise over circular cones and describe circles on the celestial sphere with radii β1 ≈ 0.8403504° (Saturn) and β2 ≈ 0.3409296° (Jupiter) around the point which is located at an angular distance of 1.647607° from the ecliptic pole.  相似文献   

    14.
    Heikki Salo  Jürgen Schmidt 《Icarus》2010,206(2):390-409
    We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn’s rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.  相似文献   

    15.
    《Icarus》1987,71(1):69-77
    The gravitational influence of moonlets or satellites on the radial structure of the rings of Saturn has been calculated numerically. A drastic change in the surface mass density is obtained even after a single scattering process of the ring particles on a moonlet (satellite). The final surface density shows a significant radial structure, which has been used to estimate the radius and the mass of moonlets or satellites embedded in rings of low optical depth (E ring, Cassini division, C ring).  相似文献   

    16.
    Raine Karjalainen 《Icarus》2007,189(2):523-537
    Ring particle aggregates are formed in the outer parts of Saturn's main rings. We study how collisions between aggregates can lead to destruction or coalescence of these aggregates, with local N-body simulations taking into account the dissipative impacts and gravitational forces between particles. Impacts of aggregates with different mass ratios are studied, as well as aggregates that consist of particles with different physical properties. We find that the outcome of the collision is very sensitive to the shape of the aggregate, in the sense that more elongated aggregates are more prone to be destroyed. We were interested in testing the accretion criterion Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] used in their F ring simulations, according to which accretion requires that the masses of the colliding bodies differ at least by a factor of 100. We confirm that such a critical mass ratio exists. In particular, simulations indicate that the exact critical mass ratio depends on the internal density and elasticity of particles, and the distance from the planet. The zone of transition, defined by the distance where individual particles or small aggregates first start to stick on the larger aggregate, and by the distance where two similar sized aggregates on the average eventually coalesce is only about 5000 km wide, if fixed particle properties are used. The rotational state of the aggregates that form via aggregate collision rapidly reaches synchronous rotation, similarly to the aggregates that form via gradual growth.  相似文献   

    17.
    The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter’s moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon’s icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon’s gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.  相似文献   

    18.
    Despite the now common position that the Pioneer anomaly is not a real gravitational effect but an effect due to the on-board thermal recoil forces – for curiosity’s sake, we here take the suggestion of Nyambuya (2015) where it has been assumed that the Pioneer anomaly – can, in-principle, be attributed to a gravitational effect due to these spacecrafts accreting some material from a rarefied Interplanetary Medium (IPM) in the domain where the Pioneer anomaly has manifested [20 AU ≲ r ≲ 70 AU]. If this assumption is correct, then, the expected Pioneer acceleration of these spacecrafts maybe much smaller than the Pioneer acceleration to cause as noticeable apsidal precession of the outer Solar planets Uranus, Neptune and Pluto, thus making it difficult to rule-out a gravitational origin of the Pioneer anomaly.  相似文献   

    19.
    Since the Saturn orbit insertion (SOI) of the Cassini spacecraft, in July 2004, the Cassini Composite Infrared Spectrometer (CIRS) has obtained a large number of thermal infrared spectra of Saturn's rings. Over the two and a half years of observations to date, ring temperatures were retrieved for a large range of unique geometries, inaccessible from Earth. Understanding their dependencies with phase angle and local time is a clue to understanding the thermal properties and dynamics of Saturn's ring particles.Azimuthal scans of rings, which have been obtained by CIRS at constant radial distance from the planet, have been planned to measure ring temperature variations with local hour angle. Over 47 azimuthal scans for Saturn's main rings (A, B, C and Cassini Division) have been retrieved to date, on both lit and unlit sides, at different phase angles and spacecraft elevations. The first measurements of the transient thermal episode of eclipse cooling in the planetary shadow have also been obtained for all three rings.In this paper, we present an overview of all azimuthal scans obtained by the Cassini/CIRS instrument so far and the dependencies of the temperature and the filling factor with the phase angle and the local hour angle. The ring temperature varies with longitude as the input heating flux coming from Saturn and the Sun changes. The decrease in temperature with the increasing phase angle on both the lit and the unlit sides and for most of the local time also suggests the presence of slowly rotating particles. The crossing of the planet's shadow generates drastic azimuthal variations in temperature, up to 20 K in the C ring. The strong anisotropy of emission observed outside the shadow between low and high phase angles decreases when ring particles cross the shadow, suggesting that particles are almost isothermal in the shadow. This suggests a thermal inertia associated with a rotating rate of particles low enough to have a thermal contrast on their surface.The temperature in the B ring is less sensitive to the phase angle effect on the lit side, suggesting that particles are close enough to form a flat layer at a scale larger than the particle's radius. On the unlit side, particles in the B ring are less sensitive to the lack of solar input than in the C ring or in the A ring. Azimuthal variations of the filling factor in the A ring are also detected with changing ring local time. This effect might be created by the presence of gravitational instabilities (wakes).  相似文献   

    20.
    We present a new formulation of the viscosity in planetary rings, where particles interact through their gravitational forces and direct collisions. In the previous studies on the viscosity in self-gravitating rings, the viscosity consists of three components, which are defined separately in different ways. The complex definitions make it difficult to evaluate the viscosity in N-body simulation of rings. In our new formulation, the viscosity is expressed in terms of changes in orbital elements of particles due to particle interactions. This makes the expression of the viscosity simple. The new formulation gives a simple way to evaluate the viscosity in N-body simulation. We find that for practical evaluation of the viscosity of planetary rings, only energy dissipation at direct inelastic collisions is needed.For tenuous particle disks (i.e., optically thin disks), we further derive a formula of the viscosity. The formula requires only a numerical coefficient that can be obtained from three-body calculation. Since planetesimal disks are also tenuous, the viscosity in planetesimal disks can be also obtained from this formula. In a subsequent paper, we will evaluate this coefficient through three-body calculation and obtain the viscosity for a wide range of parameters such as the restitution coefficient and the radial location in rings.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号