首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for the analysis of the interannual variability of background atmospheric carbon dioxide concentration. The analysis is carried out on the data from 6 observatories for which records of >8 years were available.A global-scale interannual variation of CO2 concentration in the troposphere with a characteristic time-scale of 2–3 years has been confirmed throughout the period of the records. These variations are estimated to be associated with carbon cycle imbalances of 2–3 Gt or annual net exchanges between the atmosphere and another carbon reservoir(s) at a rate of about 1.2 Gt of carbon per year. Lag correlations and amplitude comparisons between the records suggests a low latitude southern hemisphere origin to this phenomenon.The interannual variations of CO2 increase are found to be correlated with those observed in data for Pacific sea surface temperatures and Pacific witd stress, the Southern Oscillation Index and the Quasi-Biennial Oscillation. However multiple regression studies found that once the Southern Oscillation index is used as an explanatory variable for CO2 variations, the inclusion of additional geophysical variables does not give any significant improvement in the regression.  相似文献   

2.
Over three years, we found a consistent CO2 efflux from forest tundra of the Russian North throughout the year, including a large (89 g C m–2 yr–1) efflux during winter. Our results provide one explanation for the observations that the highest atmospheric CO2 concentration and greatest seasonal amplitude occur at high latitudes rather than over the mid-latitudes, where fossil fuel sources are large, and where high summer productivity offset by winter respiration should give large seasonal oscillations in atmospheric CO2. Winter respiration probably contributed substantially to the boreal winter CO2 efflux. Respiration is an exothermic process that produces enough heat to warm soils and promote further decomposition. We suggest that, as a result of this positive feedback, small changes in surface heat flux, associated with human activities in the North or with regional or global warming, could release large quantities of organic carbon that are presently stored in permafrost.  相似文献   

3.
利用景德镇温室气体监测站CO_2观测数据,分析了景德镇地区2017年12月—2018年11月大气CO_2浓度变化特征,同时对其浓度进行了筛分,以剔除污染数据,使其更具区域代表性。研究表明:景德镇地区大气CO_2浓度昼降夜升,早上最高,傍晚最低;春季最高,秋季最低;春、夏季NNE、NE、ENE风向,秋季NE、ENE风向以及冬季W、WSW、SW、SSW、S风向上CO_2浓度较高。同时,春、夏和秋季大气CO_2浓度大致随风速的增加而不断降低,冬季风速对大气CO_2浓度无明显影响。筛分后数据显示景德镇地区年均大气CO_2浓度为422.1×10~(-6),浓度日均值年振幅73.96×10~(-6),夏半年CO_2浓度低于冬半年。  相似文献   

4.
This paper formally introduces the concept of mitigation as a stochastic control problem. This is illustrated by applying a digital state variable feedback control approach known as Non-Minimum State Space (NMSS) control to the problem of specifying carbon emissions to control atmospheric CO2 concentrations in the presence of uncertainty. It is shown that the control approach naturally lends itself to integrating both anticipatory and reflexive mitigation strategies within a single unified framework. The framework explicitly considers the closed-loop nature of climate mitigation, and employs a policy orientated optimisation procedure to specify the properties of this closed-loop system. The product of this exercise is a control law that is suitably conditioned to regulate atmospheric CO2 concentrations through assimilating online information within a 25-year review cycle framework. It is shown that the optimal control law is also robust when faced with significant levels of uncertainty about the functioning of the global carbon cycle.  相似文献   

5.
The change in the Earth's equilibrium global mean surface temperature induced by a doubling of the CO2 concentration has been estimated as 0.2 to 10 K by surface energy balance models, 0.5 to 4.2 K by radiative-convective models, and 1.3 to 4.2 K by general circulation models. These wide ranges are interpreted and quantified here in terms of the direct radiative, forcing of the increased CO2, the response of the climate system in the absence of feedback processes, and the feedbacks of the climate system. It is the range in the values of these feedbacks that leads to the ranges in the projections of the global mean surface warming. The time required for a CO2-induced climate change to reach equilibrium has been characterized by an e-folding time e with values estimated by a variety of climate/ocean models as 10 to 100 years. Analytical and numerical studies show that this wide range is due to the strong dependence of e on the equilibrium sensitivity of the climate model and on the effective vertical thermal diffusivity of the ocean model. A coupled atmosphere-ocean general circulation model simulation for doubled CO2 suggestes that, as a result of the transport of the CO2-induced surface heating into the interior of the ocean, e 50 to 100 years. Theoretical studies for a realistic CO2 increase between 1850 and 1980 indicate that this sequestering of heat into the ocean's interior is responsible for the concomittant warming being only about half that which would have occurred in the absence of the ocean. These studies also indicate that the climate sytem will continue to warm towards its as yet unrealized equilibrium temperature change, even if there is no further increase in the CO2 concentration.  相似文献   

6.
The CO2-seawaler system and the method for calculating the partial pressure of CO2 (pCO3) in seawater are stu-died. The buffer capability of the ocean to increasing atmospheric CO2, is expressed in terms of the differential buffer factor and buffer index. Dissolutions of aragonite and calcite have a significant influence on the differential buffer factor. The trend of change in the buffer factor is obtained by a box model.  相似文献   

7.
8.
To investigate the hydrologic changes of climate in response to an increase of CO2-concentration in the atmosphere, the results from numerical experiments with three climate models are analyzed and compared with each other. All three models consist of an atmospheric general circulation model and a simple mixed layer ocean with a horizontally uniform heat capacity. The first model has a limited computational domain and simple geography with a flat land surface. The second model has a global computational domain with realistic geography. The third model is identical to the second model except that it has a higher computational resolution. In each numerical experiment, the CO2-induced change of climate is evaluated based upon a comparison between the two climates of a model with normal and four times the normal concentration of carbon dioxide in air. It is noted that the zonal mean value of soil moisture in summer reduces significantly in two separate zones of middle and high latitudes in response to the increase of the CO2-concentration in air. This CO2-induced summer dryness results not only from the earlier ending of the snowmelt season, but also from the earlier occurrence of the spring to summer reduction in rainfall rate. The former effect is particularly important in high latitudes, whereas the latter effect becomes important in middle latitudes. Other statistically significant changes include large increases in both soil moisture and runoff rate in high latitudes of a model during most of the annual cycle with the exception of the summer season. The penetration of moisture-rich, warm air into high latitudes is responsible for these increases.  相似文献   

9.
10.
Approximately half of human-induced carbon dioxide (CO2) emissions are taken up by the land and ocean, and the rest stays in the atmosphere, increasing the global concentration and acting as a major greenhouse-gas (GHG) climate-forcing element. Although GHG mitigation is now in the political arena, the exact spatial distribution of the land sink is not well known. In this paper, an estimation of mean European net ecosystem exchange (NEE) carbon fluxes for the period 1998–2001 is performed with three mesoscale and two global transport models, based on the integration of atmospheric CO2 measurements into the same Bayesian synthesis inverse approach. A special focus is given to sub-continental regions of Europe making use of newly available CO2 concentration measurements in this region. Inverse flux estimates from the five transport models are compared with independent flux estimates from four ecosystem models. All inversions detect a strong annual carbon sink in the southwestern part of Europe and a source in the northeastern part. Such a dipole, although robust with respect to the network of stations used, remains uncertain and still to be confirmed with independent estimates. Comparison of the seasonal variations of the inversion-based net land biosphere fluxes (NEP) with the NEP predicted by the ecosystem models indicates a shift of the maximum uptake period, from June in the ecosystem models to July in the inversions. This study thus improves on the understanding of the carbon cycle at sub-continental scales over Europe, demonstrating that the methodology for understanding regional carbon cycle is advancing, which increases its relevance in terms of issues related to regional mitigation policies.  相似文献   

11.
S. J. Kim 《Climate Dynamics》2004,22(6-7):639-651
The role of reduced atmospheric CO2 concentration and ice sheet topography plus its associated land albedo on the LGM climate is investigated using a coupled atmosphere-ocean-sea ice climate system model. The surface cooling induced by the reduced CO2 concentration is larger than that by the ice sheet topography plus other factors by about 30% for the surface air temperature and by about 100% for the sea surface temperature. A large inter-hemispheric asymmetry in surface cooling with a larger cooling in the Northern Hemisphere is found for both cases. This asymmetric inter-hemispheric temperature response is consistent in the ice sheet topography case with earlier studies using an atmospheric model coupled with a mixed-layer ocean representation, but contrasts with these results in the reduced CO2 case. The incorporation of ocean dynamics presumably leads to a larger snow and sea ice feedback as a result of the reduction in northward ocean heat transport, mainly as a consequence of the decrease in the North Atlantic overturning circulation by the substantial freshening of the North Atlantic convection regions. A reversed case is found in the Southern Ocean. Overall, the reduction in atmospheric CO2 concentration accounts for about 60% of the total LGM climate change.  相似文献   

12.
A global, flux-corrected climate model is employed to predict the surface wind stress and associated wind-driven oceanic circulation for climate states corresponding to a doubling and quadrupling of the atmospheric CO2 concentration in a simple 1% per year CO2 increase scenario. The model indicates that in response to CO2 increase, the position of zero wind stress curl in the mid-latitudes of the Southern Hemisphere shifts poleward. In addition, the wind stress intensifies significantly in the mid-latitudes of the Southern Hemisphere. As a result, the rate of water circulation in the subpolar meridional overturning cell in the Southern Ocean increases by about 6 Sv (1 Sv=106 m3 s−1) for doubled CO2 and by 12 Sv for quadrupled CO2, implying an increase of deep water upwelling south of the circumpolar flow and an increase of Ekman pumping north of it. In addition, the changes in the wind stress and wind stress curl translate into changes in the horizontal mass transport, leading to a poleward expansion of the subtropical gyres in both hemispheres, and to strengthening of the Antarctic Circumpolar Current. Finally, the intensified near-surface winds over the Southern Ocean result in a substantial increase of mechanical energy supply to the ocean general circulation.  相似文献   

13.
Concern over changes in global climate caused by growing atmospheric concentrations of carbon dioxide and other trace gases has increased in recent years as our understanding of atmospheric dynamics and global climate systems has improved. Yet despite a growing understanding of climatic processes, many of the effects of human-induced climatic changes are still poorly understood. Major alterations in regional hydrologic cycles and subsequent changes in regional water availability may be the most important effects of such climatic changes. Unfortunately, these are among the least well-understood impact. Water-balance modeling techniques - modified for assessing climatic impacts - were developed and tested for a major watershed in northern California using climate-change scenarios from both state-of-the-art general circulation models and from a series of hypothetical scenarios. Results of this research suggest strongly that plausible changes in temperature and precipitation caused by increases in atmospheric trace-gas concentrations could have major impacts on both the timing and magnitude of runoff and soil moisture in important agricultural areas. Of particular importance are predicted patterns of summer soil-moisture drying that are consistent across the entire range of tested scenarios. The decreases in summer soil moisture range from 8 to 44%. In addition, consistent changes were observed in the timing of runoff-specifically dramatic increases in winter runoff and decreases in summer runoff. These hydrologic results raise the possibility of major environmental and socioeconomic difficulties and they will have significant implications for future water-resource planning and management.  相似文献   

14.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

15.
16.
An evaluation of oceanic containment strategies for anthropogenic carbon dioxide is presented. Energy conservation is also addressed through an input hydrocarbon-fuel consumption function. The effectiveness of the proposed countermeasures is determined from atmospheric CO2 concentration predictions. A previous box model with a diffusive deep ocean is adapted and applied to the concept of fractional CO2 injection in 500 m deep waters. Next, the contributions of oceanic calcium carbonate sediment dissolution, and of deep seawater renewal, are included. Numerical results show that for CO2 direct removal measures to be effective, large fractions of anthropogenic carbon dioxide have to be processed. This point favors fuel pre-processing concepts. The global model also indicates that energy conservation, i.e. a hydrocarbon-fuel consumption slowdown, remains the most effective way to mitigate the greenhouse effect, because it offers mankind a substantial time delay to implement new energy production alternatives.  相似文献   

17.
赵高祥 《大气科学》1981,5(1):69-77
本文用直接积分的方法计算了CO_215微米带在水平大气路径和垂直大气路径上的透过率,并得出了一个能迅速和精确地计算CO_215微米带垂直路径大气透过率的模式的系数。  相似文献   

18.
This study evaluates the equilibrium response of a coupled ocean–atmosphere model to the doubling, quadrupling, and halving of CO2 concentration in the atmosphere. Special emphasis in the study is placed upon the response of the thermohaline circulation in the Atlantic Ocean to the changes in CO2 concentration of the atmosphere. The simulated intensity of the thermohaline circulation (THC) is similar among three quasi-equilibrium states with the standard, double the standard, and quadruple the standard amounts of CO2 concentration in the atmosphere. When the model atmosphere has half the standard concentration of CO2, however, the THC is very weak and shallow in the Atlantic Ocean. Below a depth of 3 km, the model oceans maintain very thick layer of cold bottom water with temperature close to –2 °C, preventing the deeper penetration of the THC in the Atlantic Ocean. In the Circumpolar Ocean of the Southern Hemisphere, sea ice extends beyond the Antarctic Polar front, almost entirely covering the regions of deepwater ventilation. In addition to the active mode of the THC, there exists another stable mode of the THC for the standard, possibly double the standard (not yet confirmed), and quadruple the standard concentration of atmospheric carbon dioxide. This second mode is characterized by the weak, reverse overturning circulation over the entire Atlantic basin, and has no ventilation of the entire subsurface water in the North Atlantic Ocean. At one half the standard CO2 concentration, however, the intensity of the first mode is so weak that it is not certain whether there are two distinct stable modes or not. The paleoceanographic implications of the results obtained here are discussed as they relate to the signatures of the Cenozoic changes in the oceans.An erratum to this article can be found at  相似文献   

19.
卫星高光谱大气CO2探测精度验证研究进展   总被引:2,自引:0,他引:2  
卫星高光谱大气CO2遥感探测对全球气候变化研究意义重大,卫星CO2反演产品的地基观测验证是获得产品精度评价、发现算法可适用范围和局限性的重要环节,因此地基高光谱CO2的观测验证研究对提高卫星产品定量精度至关重要。本文综述了当前国际上大气CO2探测卫星的研制进展,短波红外大气CO2的反演方法进展,重点阐述了地基高光谱CO2探测技术进展及其对卫星大气CO2的定量探测精度验证方法和技术研究进展,并对该研究领域未来的发展提出展望。  相似文献   

20.
Since April 1986, measurements of the CO2 concentration in the surface air have been conducted at the Meteorological Research Institure (MRI, 36°04 N, 140°07 E, 25 m above sea level) in Tsukuba, located 50 km northeast of Tokyo, Japan. The CO2 data measured over times between 11:00 Japan Standard Time (JST) and 16:00 JST (C N ) were considered to be representative of the air (within a few ppmv) in the planetary boundary layer. To evaluate the representative CO2 level on a spatial scale larger than that of the C N record, the CO2 data with hour-to-hour variation less than 1 ppmv were selected (C P ). Comparison of these data with those of Ryori (39°02 N, 141°50 E), a continental station operated by the Japan Meteorological Agency, indicates that the C P record provides a representative CO2 level in the air on spatial scales of at least a few hundred kilometers.The C N record allows an investigation of the internanual changes in photosynthesis/respiration against changes in climatological parameters. Within a small temperature anomaly (ca.±1 °C) respiration is sensitive to the temperature change, while photosynthesis is less sensitive. When the temperature anomaly is large, however, photosynthesis and respiration tend to be competitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号