首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use two-dimensional kinematic maps of simulated binary disc mergers to investigate the  λR  -parameter, which is a luminosity-weighted measure of projected angular momentum per unit mass. This parameter was introduced to subdivide the SAURON sample of early-type galaxies in so-called fast  λR > 0.1  and slow rotators  λR < 0.1  . Tests on merger remnants reveal that  λR  is a robust indicator of the true angular momentum content in elliptical galaxies. We find the same range of  λR  values in our merger remnants as in the SAURON galaxies. The merger mass ratio is decisive in transforming fast rotators into slow rotators in a single binary merger, the latter being created mostly in an equal-mass merger. Slow rotators have a  λR  which does not vary with projection. The confusion rate with face-on fast rotators is very small. Mergers with a gas component form slow rotators with smaller ellipticities than collisionless merger remnants have, and are in much better agreement with the SAURON slow rotators. Remergers of merger remnants are slow rotators, but tend to have too high ellipticities. Fast rotators maintain the angular momentum content from the progenitor disc galaxy if merger mass ratio is high. Some SAURON galaxies have values of  λ R   as high as our progenitor disc galaxies.  相似文献   

2.
We analyse N -body galaxy merger experiments involving disc galaxies. Mergers of disc–bulge–halo models are compared to those of bulgeless, disc–halo models to quantify the effects of the central bulge on merger dynamics and the structure of the remnant. Our models explore galaxy mass ratios 1:1 through 3:1, and use higher bulge mass fractions than previous studies. A full comparison of the structural and dynamical properties with our observations is carried out. The presence of central bulges results in longer tidal tails, oblate final intrinsic shapes, surface brightness profiles with a higher Sérsic index, steeper rotation curves and oblate-rotator internal dynamics. Mergers of bulgeless galaxies do not generate long-lasting tidal tails, and their strong triaxiality seems inconsistent with observations; these remnants show shells, which we do not find in models including central bulges. Giant ellipticals with boxy isophotes and anisotropic dynamics cannot be produced by the mergers modelled here; they could be the result of mergers between lower luminosity ellipticals, themselves plausibly formed in disc-disc mergers.  相似文献   

3.
Photometry and long-slit spectroscopy are presented for a sample of six galaxies with a low surface-brightness stellar disc and a bulge. The characterizing parameters of the bulge and disc components were derived by means of a two-dimensional photometric decomposition of the images of the sample galaxies. Their surface-brightness distribution was assumed to be the sum of the contribution of a Sérsic bulge and an exponential disc, with each component being described by elliptical and concentric isophotes of constant ellipticity and position angle. The stellar and ionized-gas kinematics were measured along the major and minor axes in half of the sample galaxies, whereas the other half was observed only along two diagonal axes. Spectra along two diagonal axes were obtained also for one of the objects with major and minor axis spectra. The kinematic measurements extend in the disc region out to a surface-brightness level  μ R ≈ 24  mag arcsec−2, reaching in all cases the flat part of the rotation curve. The stellar kinematics turns out to be more regular and symmetric than the ionized-gas kinematics, which often shows the presence of non-circular, off-plane and non-ordered motions. This raises the question about the reliability of the use of the ionized gas as the tracer of the circular velocity in the modelling of the mass distribution, in particular in the central regions of low surface-brightness galaxies.  相似文献   

4.
In this work we build a detailed dynamic model for an S0 galaxy possibly hosting a central massive dark object (MDO). We show that the photometric profiles and the kinematics along the major and minor axes, including the h 3 and h 4 profiles, imply the presence of a central MDO of mass     i.e. 0.3–2.8 per cent of the mass derived for the stellar spheroidal component. Models without MDO are unable to reproduce the kinematic properties of the inner stars and of the rapidly rotating nuclear gas.
The stellar population consists of an exponential disc (27 per cent of the light) and a diffuse spheroidal component (73 per cent of the light) that cannot be represented by a simple de Vaucouleurs profile at any radius. The M L ratios we found for the stellar components (3.3 and 6.6 respectively) are typical of those of disc and elliptical galaxies.  相似文献   

5.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

6.
We use oblate axisymmetric dynamical models including dark haloes to determine the orbital structure of intermediate mass to massive early-type galaxies in the Coma galaxy cluster. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 per cent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models, we show that flattening by stellar anisotropy maximizes the entropy for a given density distribution. Collisionless disc merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of discs unless the influence of dissipational processes was significant.  相似文献   

7.
Observations indicate that much of the interstellar gas in merging galaxies may settle into extended gaseous discs. Here, I present simulations of disc formation in mergers of gas-rich galaxies. Up to half of the total gas settles into embedded discs; the most massive instances result from encounters in which both galaxies are inclined to the orbital plane. These discs are often warped, many have rather complex kinematics, and roughly a quarter have counter-rotating or otherwise decoupled central components. Discs typically grow from the inside out; infall from tidal tails may continue disc formation over long periods of time.  相似文献   

8.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

9.
We discuss a heuristic model to implement star formation and feedback in hydrodynamical simulations of galaxy formation and evolution. In this model, gas is allowed to cool radiatively and to form stars at a rate given by a simple Schmidt-type law. We assume that supernova feedback results in turbulent motions of gas below resolved scales, a process that can pressurize the diffuse gaseous medium effectively, even if it lacks substantial thermal support. Ignoring the complicated detailed physics of the feedback processes, we try to describe their net effect on the interstellar medium with a fiducial second reservoir of internal energy, which accounts for the kinetic energy content of the gas on unresolved scales. Applying the model to three-dimensional, fully self-consistent models of isolated disc galaxies, we show that the resulting feedback loop can be modelled with smoothed particle hydrodynamics such that converged results can be reached with moderate numerical resolution. With an appropriate choice of the free parameters, Kennicutt's phenomenological star formation law can be reproduced over many orders of magnitude in gas surface density. We also apply the model to mergers of equal-mass disc galaxies, typically resulting in strong nuclear starbursts. Confirming previous findings, the presence of a bulge can delay the onset of the starburst from the first encounter of the galaxies until their final coalescence. The final density profiles of the merger remnants are consistent with de Vaucouleurs profiles, except for the innermost region, where the newly created stars give rise to a luminous core with stellar densities that may be in excess of those observed in the cores of most elliptical galaxies. By comparing the isophotal shapes of collisionless and dissipative merger simulations we show that dissipation leads to isophotes that are more discy than those of corresponding collisionless simulations.  相似文献   

10.
We have obtained long-slit spectroscopy for a sample of nine S0 galaxies in the Fornax Cluster using the FORS2 spectrograph at the 8.2-m European Southern Observatory (ESO) Very Large Telescope (VLT). From these data, we have extracted the kinematic parameters, comprising the mean velocity, velocity dispersion and higher moment h 3 and h 4 coefficients, as a function of position along the major axes of these galaxies. Comparison with published kinematics indicates that earlier data are often limited by their lower signal-to-noise ratio and relatively poor spectral resolution. The greater depth and higher dispersion of the new data mean that we reach well beyond the bulges of these systems, probing their disc kinematics in some detail for the first time. Qualitative inspection of the results for individual galaxies shows that they are not entirely simple systems, perhaps indicating a turbulent past. None the less, we are able to derive reliable circular velocities for most of these systems, which points the way towards a study of their Tully–Fisher relation. This study, along with an analysis of the stellar populations of these systems out to large galactocentric distances, will form the bases of future papers exploiting these new high-quality data, hopefully shedding new light on the evolutionary history of these systems.  相似文献   

11.
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.  相似文献   

12.
We investigate how well the intrinsic shape of early-type galaxies can be recovered when both photometric and two-dimensional stellar kinematic observations are available. We simulate these observations with galaxy models that are representative of observed oblate fast-rotator to triaxial slow-rotator early-type galaxies. By fitting realistic triaxial dynamical models to these simulated observations, we recover the intrinsic shape (and mass-to-light ratio), without making additional (ad hoc) assumptions on the orientation.
For (near) axisymmetric galaxies, the dynamical modelling can strongly exclude triaxiality, but the regular kinematics do not further tighten the constraint on the intrinsic flattening significantly, so that the inclination is nearly unconstrained above the photometric lower limit even with two-dimensional stellar kinematics. Triaxial galaxies can have additional complexity in both the observed photometry and kinematics, such as twists and (central) kinematically decoupled components, which allows the intrinsic shape to be accurately recovered. For galaxies that are very round or show no significant rotation, recovery of the shape is degenerate, unless additional constraints such as from a thin disc are available.  相似文献   

13.
We study the location of massive disc galaxies on the Tully–Fisher (TF) relation. Using a combination of K -band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global H  i profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km s−1 lie systematically to the right of the relation defined by less massive systems, causing a characteristic 'kink' in the relations. Massive, early-type disc galaxies in particular have a large offset, up to 1.5 mag, from the main relation defined by less massive and later-type spirals.
The presence of a change in slope at the high-mass end of the TF relation has important consequences for the use of the TF relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z ≈ 1 may have been significantly larger than estimated in several recent studies.
We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the TF relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.  相似文献   

14.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

15.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

16.
We select 107 blue-core galaxies from the MaNGA survey, studying their morphology, kinematics as well as the gas-phase metallicity. Our results are as follows:(i) In our sample, 26% of blue-core galaxies have decoupled gas-star kinematics, indicating external gas accretion;15% have bar-like structure and 8% show post-merger features, such as tidal tails and irregular gas/star velocity field. All these processes/features, such as accreting external misaligned gas, interaction and bar, can trigger gas inflow. Thus the central star-forming activities lead to bluer colors in their centers(blue-core galaxies).(ii) By comparing with the SDSS DR7 star-forming galaxy sample, we find that the blue-core galaxies have higher central gas-phase metallicity than what is predicted by the local mass-metallicity relation. We explore the origin of the higher metallicity, finding that not only the blue-core galaxies, but also the flat-gradient and red-core galaxies all have higher metallicity. This can be explained by the combined effect of redshift and galaxy color.  相似文献   

17.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

18.
We have identified two new galaxies with gas counter-rotation (NGC 1596 and 3203) and have confirmed similar behaviour in another one (NGC 128), this using results from separate studies of the ionized-gas and stellar kinematics of a well-defined sample of 30 edge-on disc galaxies. Gas counter-rotators thus represent 10 ± 5 per cent of our sample, but the fraction climbs to 21 ± 11 per cent when only lenticular (S0) galaxies are considered and to 27 ± 13 per cent for S0 galaxies with detected ionized gas only. Those fractions are consistent with but slightly higher than previous studies. A compilation from well-defined studies of S0 galaxies in the literature yields fractions of 15 ± 4 and 23 ± 5 per cent, respectively. Although mainly based on circumstantial evidence, we argue that the counter-rotating gas originates primarily from minor mergers and tidally induced transfer of material from nearby objects. Assuming isotropic accretion, twice those fractions of objects must have undergone similar processes, underlining the importance of (minor) accretion for galaxy evolution. Applications of gas counter-rotators to barred galaxy dynamics are also discussed.  相似文献   

19.
Understanding the origin and evolution of dwarf early-type galaxies remains an important open issue in modern astrophysics. Internal kinematics of a galaxy contains signatures of violent phenomena which may have occurred, e.g. mergers or tidal interactions, while stellar population keeps a fossil record of the star formation history; therefore studying connection between them becomes crucial for understanding galaxy evolution. Here, in the first paper of the series, we present the data on spatially resolved stellar populations and internal kinematics for a large sample of dwarf elliptical (dE) and lenticular (dS0) galaxies in the Virgo cluster. We obtained radial velocities, velocity dispersions, stellar ages and metallicities out to 1–2 half-light radii by reanalysing already published long-slit and integral-field spectroscopic data sets using the nbursts full spectral fitting technique. Surprisingly, bright representatives of the dE/dS0 class (   MB =−18.0  to −16.0 mag) look very similar to intermediate-mass and giant lenticulars and ellipticals: (1) their nuclear regions often harbour young metal-rich stellar populations always associated with the drops in the velocity dispersion profiles; (2) metallicity gradients in the main discs/spheroids vary significantly from nearly flat profiles to −0.9 dex   r −1e  , i.e. somewhat three times steeper than for typical bulges; (3) kinematically decoupled cores were discovered in four galaxies, including two with very little, if any, large-scale rotation. These results suggest similarities in the evolutionary paths of dwarf and giant early-type galaxies and call for reconsidering the role of major mergers in the dE/dS0 evolution.  相似文献   

20.
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially those in which the disc spins around its axis in a retrograde sense compared with its motion around the halo centre. We are able to reproduce the H  i velocity map of the kinematically lopsided galaxy NGC 4395.
The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号