首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
Recent nitrate, chloride, and bromide concentrations were studied in the Ogallala Aquifer of northwest Texas. The study included 361 wells with a median depth of 92 m in a rural area dominated by agricultural activity and oil and gas production. Only five observations surpassed the 44.3 mg/L standard for nitrate (10 mg/L NO3-N). Four other observations, and one from the preceding set, exceeded the secondary standard of 250 mg/L for chloride. Maximum concentrations were 91.2 mg/L, 1530 mg/L, and 0.70 mg/L for nitrate, chloride, and bromide, respectively. Chloride/bromide ratios covered a broad range, from 30.4 to 10930, but medians were < 160 for each of two years analyzed. There were statistically significant correlations between nitrate and chloride, and chloride and well depth. Results of this study suggest that agricultural activity has locally impacted ground water in north-west Texas. Regionally, low aquifer recharge rates have curtailed ground water contamination from potentially adverse land uses.  相似文献   

2.
3.
Soil-solution samplers and shallow ground water monitoring wells were utilized to monitor nitrate movement to ground water following H2O2 application to a clogged soil absorption system. Nitrate-nitrogen concentrations in soil water and shallow ground water ranged from 29 to 67 mg/L and 9 to 22 mg/L, respectively, prior to H2O2 treatment. Mean nitrate-nitrogen concentrations in soil water and ground water increased and ranged from 67 to 115 mg/L and 23 to 37 mg/L, respectively, one week after H2O2 application. Elevated concentrations of nitrate-nitrogen above background persisted for several weeks following H2O2 treatment. The H2O2 treatment was unsuccessful in restoring the infiltrative capacity of a well-structured soil. Application of H2O2 to the soil absorption system poses a threat of nitrate contamination of ground water and its usefulness should be fully evaluated before rehabilitation is attempted.  相似文献   

4.
The problem of high fluoride in water sources in Africa and the rest of the developing world has exacerbated in the latest past due to increasing shortage of water. More people are being exposed to high water fluoride resulting in elevated levels of fluorosis in the societies. Fluoride (F) adsorption from solutions using a siliceous mineral from Kenya (M1) was studied on batch basis and results verified on high fluoride water using fixed‐bed column experiments. About 100% batch F adsorption was achieved at 200 mg/L F concentration, 0.5 g/mL adsorbent dosage, 303–333 K, and pH 3.4 ± 0.2. Based on Giles classifications, F adsorption isotherm was found to be an H3 type isotherm. The equilibrium data was correlated to Freundlich and Langmuir models and the maximum Langmuir adsorption capacity was found to be 12.4 mg/g. Column experiments were conducted for different fluoride concentrations, bed depths, and flow rates. The F breakthrough curves were analyzed using the Thomas model and efficient F adsorption was found to occur at low flow rates and low influent concentrations. The Thomas F adsorption capacity (11.7 mg/g) was consistent with the Langmuir isotherm capacity showing that M1 could be applied as an inexpensive medium for water defluoridation.  相似文献   

5.
Field-based experiments were designed to investigate the release of naturally occurring, low to moderate (< 50 microg/L) arsenic concentrations to well water in a confined sandstone aquifer in northeastern Wisconsin. Geologic, geochemical, and hydrogeologic data collected from a 115 m2 site demonstrate that arsenic concentrations in ground water are heterogeneous at the scale of the field site, and that the distribution of arsenic in ground water correlates to solid-phase arsenic in aquifer materials. Arsenic concentrations in a test well varied from 1.8 to 22 microg/L during experiments conducted under no, low, and high pumping rates. The quality of ground water consumed from wells under typical domestic water use patterns differs from that of ground water in the aquifer because of reactions that occur within the well. Redox conditions in the well can change rapidly in response to ground water withdrawals. The well borehole is an environment conducive to microbiological growth, and biogeochemical reactions also affect borehole chemistry. While oxidation of sulfide minerals appears to release arsenic to ground water in zones within the aquifer, reduction of arsenic-bearing iron (hydr)oxides is a likely mechanism of arsenic release to water having a long residence time in the well borehole.  相似文献   

6.
Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 microg/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed.  相似文献   

7.
Kelly WR 《Ground water》2008,46(5):772-781
The rapid expansion of major cities throughout the world is resulting in the degradation of water quality in local aquifers. Increased use of road deicers since the middle of the 20th century in cities in the northern United States, Canada, and Europe has been linked to degraded ground water quality. In this article, Chicago, Illinois, and its outlying suburban areas are used as an example of the effects of urbanization in a historical context. A statistical study of historical water quality data was undertaken to determine how urbanization activities have affected shallow (<60 m) ground water quality. Chloride (Cl) concentrations have been increasing, particularly in counties west and south of Chicago. In the majority of shallow public supply wells in the western and southern counties, Cl concentrations have been increasing since the 1960s. About 43% of the wells in these counties have rate increases greater than 1 mg/L/year, and 15% have increases greater than 4 mg/L/year. Approximately 24% of the samples collected from public supply wells in the Chicago area in the 1990s had Cl concentrations greater than 100 mg/L (35% in the western and southern counties); median values were less than 10 mg/L before 1960. The greater increase in Cl concentrations in the outer counties is most likely due to both natural and anthropogenic factors, including the presence of more significant and shallower sand and gravel deposits, less curbing of major highways and streets, and less development in some parts of these counties.  相似文献   

8.
Abstract

Reports on the occurrence of fluoride in natural water resources and the associated health hazards due to human consumption have been made from many parts of India during the last decade. With the objective of organizing a systematic scientific programme to understand the behaviour of fluoride in natural water resources in relation to the local hydrogeological and climatic conditions and agricultural use, a typical area constituting the lower Vamsadhara River basin was chosen for a detailed study. High fluoride concentrations in the groundwater reaching a maximum of 3.4 mg 1?1 were observed to be associated with weathered formations of pyroxene amphibolites and pegmatites. The groundwater in the clayey soils contained much less fluoride as compared to the sandy soils. The complex depositional pattern of these sandy and clayey soils plays an important role in the uneven spatial distribution of fluoride in the groundwater. The contribution of fluoride from geological formations is far greater than that from agriculture: the maximum yield of fluoride by superphosphate fertilizer to irrigation water is observed to be 0.34 mg 1?1. The fluoride concentration is expected to be increased in the future as the groundwater is subsaturated with respect to fluorite. An inverse relationship between F and Ca and positive relationships of F with Na, HCO3, PO4 and electrical conductivity were observed. Best relationships were obtained in the fluoride range of 1.0–3.4 mg 1?1.  相似文献   

9.
Water samples from private water supply wells in five unsewered subdivisions were tested for nitrate-nitrogen to determine the possible impact of septic systems on ground water quality. Three subdivisions are located in Eau Claire County and two in LaCrosse County, Wisconsin.
The nitrate-nitrogen concentrations in the wells were analyzed in relation to ground water flow direction, the location of septic systems within the subdivision, and the hydrogeologic and physical characteristics of the subdivisions. A comparison of three nitrogen mass balance models helped to identify the possible sources of nitrate-nitrogen in the wells.
The results indicate that nitrogen from septic systems and lawn fertilizer cause nitrate-nitrogen to increase in the ground water beneath the downgradient side of the subdivisions. In three of the five subdivisions the highest nitrate-nitrogen value exceeds the drinking water standard of 10 mg/L.  相似文献   

10.
Ground water quality networks for monitoring phreatic drinking water wellfields are generally established for two main purposes: (1) the short-term safeguarding of public water supply and (2) signaling and predicting future quality changes in the extracted ground water. Six monitoring configurations with different well locations and different screen depths and lengths were evaluated using a numerical model of the 3D ground water flow toward a partially penetrating pumping well in a phreatic aquifer. Travel times and breakthrough curves for observation and pumping wells were used to judge the effectiveness of different design configurations for three monitoring objectives: (1) early warning; (2) prediction of future quality changes; and (3) evaluation of protection measures inside a protection zone. Effectiveness was tested for scenarios with advective transport, first-order degradation, and linear sorption. It is shown that the location and especially the depth of the observation wells should be carefully chosen, taking into account the residence time from the surface to the observation well, the residual transit times to the extraction well, and the transformation and retardation rates. Shallow monitoring was most functional for a variety of objectives and conditions. The larger the degradation rates or retardation, the shallower should the monitoring be for effective early warning and prediction of future ground water quality. The general approach followed in the current study is applicable for many geohydrological situations, tuning specific monitoring objectives with residence times and residual transit times obtained from a site-specific ground water flow model.  相似文献   

11.
Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.  相似文献   

12.
Elevated nitrate concentrations in groundwater are a common challenge for water management. One important factor in this context is higher frequencies and intensities of wet-dry cycles that may cause increased nitrate concentrations in groundwater due to nitrate flushes after drought termination. Yet systematic studies on regional-scale impacts of droughts on groundwater nitrate concentrations are missing so far. Here we analyzed time series of 44 shallow groundwater wells and 41 springs all across the German Federal State Baden-Wuerttemberg from 2000 to 2018 to characterize patterns of post-drought nitrate increase in groundwater. In general, half of the exceptional nitrate concentrations, which exceeded the 80th percentile of long-term nitrate measurements, could be related to droughts in the research timeframe. The 2003 drought event stood out in terms of drought severity and post-drought nitrate concentration increases in our data. The great majority (91%) of all monitoring sites showed at least one exceptionally high nitrate concentration in the 4 years following the 2003 drought event. Springs were mainly located in forests of steep low mountain ranges and wells in cropland of flat river valleys. Therefore, delay times between drought intensity and nitrate concentration increases as well as magnitudes of nitrate concentration increase were diverse among wells and springs. We derived two distinct nitrate response patterns: (i) nitrate increases immediately following drought events (more common for springs and fractured rock aquifers) and (ii) delayed nitrate increases (more common for wells and porous aquifers). Springs generally showed quicker (median of 101 days) but weaker (median of +1.3 mg/L) post-drought nitrate increases than wells (185 days, +3.4 mg/L). Only few sites exhibited no post-drought nitrate increase and post-drought mean-nitrate concentrations of groundwater reservoirs were extraordinarily high in 2006. Overall, we demonstrate that post-drought nitrate increase in groundwater is omnipresent, while different landscapes and hydrogeological characteristics create a diverse regional pattern. As severe droughts become more frequent in a changing climate, post-drought nitrate increase may intensify problems regarding water quality and supply.  相似文献   

13.
Pesticides in Nebraska's Ground Water   总被引:1,自引:0,他引:1  
More than 2263 well water samples were collected throughout Nebraska and analyzed for pesticides. Thirteen and one-half percent contained detectable levels of atrazine, but only 22 wells exceeded the health advisory of 3.0 ppb. Although the samples came from almost every county in the state, this sampling is not based solely on a randomly selected group of wells. The highest frequency of detections occurred in irrigated corn-growing areas with less than 50 feet to ground water. These areas were sampled at a greater frequency than the less vulnerable areas. Cyanazine, together with the additional triazines — simazine, propazine, prometone, and ametryne, also were detected in some well waters; however, their frequency of detection was well below that of atrazine. The triazine metribuzin was not detected.
Alachlor, propachlor, and metolachlor also were detected in trace levels in several wells. Five of 2072 samples analyzed for alachlor exceeded the health advisory of 0.4 ppb. Almost all of the contaminated wells were in vulnerable areas. The relatively high frequency of propachlor detections occurred in predominately irrigated corn-growing areas, rather than in areas where propachlor is traditionally applied.
The factors that appear most directly involved in the observed distribution of pesticides in ground water are the intensity of areal usage, pesticide persistence and mobility, irrigation, soil drainage capacity, and depth to ground water.
Fifteen pesticide residues were detected during this study. If ethylene dibromide and carbon tetrachloride, which were detected in ground water adjacent to grain elevators are included, a total of 17 pesticide residues have been detected in Nebraska's ground water.  相似文献   

14.
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate‐rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field‐measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water–rock interactions. Water from wells flow through small fractures, which restrict flow and increase water–rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
In many smallholder farms in sub-Saharan Africa dambos are used for grazing and crop production especially horticultural crops. Increased use of dambos especially for crop production can result in ground and surface water pollution. Ground and surface water quality along a dambo transect in Chihota, Zimbabwe, was investigated between October 2013 and February 2014. The transect was divided into; upland (control), dambo gardens (mid-slope) and the river (valley bottom). Water samples for quality assessment were collected in October 2013 (peak of dry season) and February 2014 (peak of rainy season). The collected water samples were analysed for pH, faecal coliforms, total nitrogen, electrical conductivity, total dissolved solids (TDS), and some selected nutrients (P, K, Ca, Mg, Na, Zn, and Cu). Water pH was 7.0, 6.4 and 6.1 for river water, garden and upland wells respectively. During the wet season total nitrogen (TN) concentrations were 233 mg/L for uplands, 242 mg/L for gardens and 141 mg/L for the river. During the dry season, TN concentrations were all below 20 mg/L, and were not significantly different among sampling stations along the dambo transect. Dry season faecal coliform units (fcu) were significantly different and were 37.2, 30.0 and 5.0 for upland wells, garden wells and river respectively. Wet season faecal coliforms were also significantly different and were 428.5, 258.0 and 479.4 fcu for upland wells, garden wells and river respectively. The other measured physico-chemical parameters also varied with sampling position along the transect. It was concluded that TN and fcu in sampled water varied with season and that wet season concentrations were significantly higher than dry season concentrations. High concentrations of faecal coliforms and total N during the wet season was attributed to increased water movement. Water from upland wells, garden wells and river was not suitable for human consumption according to WHO standards during both the dry and wet seasons.  相似文献   

16.
Variations of bromide in potable ground water in the United States   总被引:2,自引:0,他引:2  
Concentrations of bromide in potable ground water that has <10 mg/L chloride range from 0.0032 to 0.058 mg/L with a median value of 0.016 mg/L. The chloride/bromide mass ratio for the same water ranges from 43 to 285 with a median value of 101. The ratios, which resulted from screening approximately 165 analyses of water from 32 locations in 24 states in the United States, show a distinct geographic variation with highest values near the coast and trending toward a value of approximately 50 in the continental interior.  相似文献   

17.
Atrazine, cyanazine, alachlor, and metolachlor in the surface water of a recharge structure, which impounds runoff from row-cropped farmland in Nebraska, are transported with seepage to the shallow ground water flow system and to the locally confined regional aquifer. All wells in the shallow flow system and all those in the regional flow system impacted by seepage from the structure had detectable concentrations of at least one of the four pesticides.
The detectable concentrations of cyanzine, alachlor, and metolachlor in the two flow systems ranged from 0.1 to 0.9 ppb. These concentrations were an order of magnitude lower than those in the surface water. Concentrations in the regional aquifer clustered at the lower end of this concentration range. These three pesticides were not detected in the baseline study of the regional aquifer.
Unlike alachlor, cyanzine, and metolachlor, atrazine was always present in the wells impacted by seepage from the recharge structure. In the shallow flow system, concentrations ranged from 0.3 to 8.8 ppb and from 0.1 to 2.5 ppb in the regional aquifer. The average of the detectable atrazine concentrations in the baseline study was 0.04 ± 0.05 ppb.  相似文献   

18.
AQUIPRO, a PC-based method, was used to assess aquifer vulnerability using digital water well logs. The AQUIPRO model is a parameter/factor weighting system for rating the pollution potential of an aquifer. This method uses the well depth, as well as the clay and partial clay thickness in a well, to generate pollution potential scores. In this model, aquifer protection increases as the AQUIPRO vulnerability scores increase and ground water pollution potential decreases. Computerized water well records of 2435 domestic wells with partial chemistry data were used to determine the ground water pollution potential of Kalamazoo County, Michigan. Theoretically, low AQUIPRO pollution potential scores should have more frequent occurrences of ground water contamination events than areas with high AQUIPRO scores with similar land-use, well construction, and well densities. The relative AQUIPRO scores were compared with the frequency of occurrences of nitrate-N in ground water wells. The average nitrate-N concentrations within each relative AQUIPRO vulnerability scores category were also compared. The results indicate that domestic wells containing 5 mg/L or more nitrate-N showed a positive correlation between the frequency of occurrences of nitrate-N and relative decrease of AQUIPRO (r2 = 0.99) vulnerability scores. In other words, as the ground water pollution potential increases, the occurrence frequency of nitrate-N also increases. Furthermore, the results show that as the relative AQUIPRO (r2 = 0.96) vulnerability scores decrease, the mean nitrate-N concentrations also increase.  相似文献   

19.
Water-quality conditions in surficial unconsolidated aquifers were assessed in five agricultural regions in the United States. The assessment covers the Delmarva Peninsula, and parts of Long Island, Connecticut, Kansas, and Nebraska, and is based on water-quality and ancillary data collected during the 1980s. Concentrations of nitrate in ground water in these areas have increased because of applications of commercial fertilizers and manure. Nitrate concentrations exceed the maximum contaminant level (MCL) for drinking water of 10 milligrams per liter as nitrogen established by the U.S. Environmental Protection Agency in 12 to 46 percent of the wells sampled in the agricultural regions. Concentrations of nitrate are elevated within the upper 100 to 200 feet of the surficial aquifers. Permeable and sandy deposits that generally underlie the agricultural areas provide favorable conditions for vertical leaching of nitrate to relatively deep parts of the aquifers. The persistence of nitrate at such depths is attributed to aerobic conditions along ground-water-flow paths. Concentrations of nitrate are greatest in areas that are heavily irrigated or areas that are underlain by well-drained sediments; more fertilizer is typically applied on land with well-drained sediments than on poorly drained sediments because well-drained sediments have a low organic-matter content and low moisture capacity. Concentrations of other inorganic constituents related to agriculture, such as potassium and chloride from potash fertilizers, and calcium and magnesium from liming, also are significantly elevated in ground water beneath the agricultural areas. These constituents together impart a distinctive agricultural-chemical trademark to the ground water, different from natural water.  相似文献   

20.
MTBE and gasoline hydrocarbons in ground water of the United States   总被引:1,自引:0,他引:1  
The occurrence of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons was examined in three types of studies of ground water conducted by the U.S. Geological Survey: major aquifer surveys, urban land-use studies, and agricultural land-use studies. The detection frequency of MTBE was dependent on the study type, with the highest detection frequency in urban land-use studies. Only 13 ground water samples from all study types, or 0.3%, had concentrations of MTBE that exceeded the lower limit of the U.S. EPA's Drinking-Water Advisory. The detection frequency of MTBE was highest in monitoring wells located in urban areas and in public supply wells. The detection frequency of any gasoline hydrocarbon also was dependent on study type and generally was less than the detection frequency of MTBE. The probability of detecting MTBE in ground water was strongly associated with population density, use of MTBE in gasoline, and recharge. Ground water in areas with high population density, in areas where MTBE is used as a gasoline oxygenate, and in areas with high recharge rates had a greater probability of MTBE occurrence. Also, ground water from public supply wells and shallow ground water underlying urban land-use areas had a greater probability of MTBE occurrence compared to ground water from domestic wells and ground water underlying rural land-use areas. The probability of detecting MTBE in ground water was weakly associated with the density of leaking underground storage tanks, soil permeability, and aquifer consolidation, and only concentrations of MTBE >0.5 microg/L were associated with dissolved oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号